JOURNAL OF MAGNETIC RESONANCE, Series A 101, 30-40(1993)

Spin-Echo Behavior of Nonintegral-Spin Quadrupolar Nuclei
in Inorganic Solids *

JURGEN HAASET 1§ AND ERIC OLDFIELDY}

tDepartment of Chemistry, University of Hlinois at Urbana~Champaign, 505 South Mathews Avenue, Urbana, Hlinois 61801;
and 1Sektion Physik der Universitdt Leipzig, Linnéstrasse 5, Leipzig, Germany

Received December 19, 1991; revised March 26, 1992

The response to spin-echo radiofrequency pulse excitation of
a variety of nonintegral-spin quadrupolar nuclei (*Na, ’Al, and
’Nb) in inorganic solids (single-crystal ruby and sapphire,
a-Ale3, ’Y-Ale;, AlN, NaNO3, KNbO3, NaNbOg, LleO},
albite, and the zeolite Linde A), subject to strong quadrupolar
interactions and dipolar interactions of varying strength, is re-
ported. It is demonstrated that “soft” RF pulse excitation with
a pair of selective 7/2 and « pulses yields predictable spin-echo
decay behavior as a function of dipolar interaction, the experi-
mental results being in good agreement with the theoretical pre-

dictions. © 1993 Academic Press, Inc.

INTRODUCTION

In the past few years, there has been a rapid growth in the
area of NMR studies of nonintegral-spin quadrupolar nuclei
(e.g., 'O, 77Al) in various inorganic solids—such as zeolites,
glasses, ceramics and minerals (/). Most studies have con-
centrated on measurement of isotropic chemical shifts, §;,
and, to some extent, nuclear quadrupole coupling constants
(e*gQ/h) and have made a range of correlations between
these parameters and various structural features—such as
bond angles and coordination number. To date, however,
there have been relatively few studies of linewidths and spin-—
spin (spin-echo decay) and spin-lattice relaxation in such
materials. In this paper, we discuss the linewidths and spin-
spin relaxation behavior of a variety of nonintegral-spin
quadrupolar nuclei in solids, and elsewhere we report on a
multinuclear NMR study of spin-lattice relaxation in a series
of zeolites (2).

These topics are of importance since they provide new
insight into the static and dynamic structure of solids—in-
cluding (in principle ) amorphous materials. In a recent letter,
Han and Kessemeier (3) discussed the spin-echo decay be-
havior of a Si(B) semiconductor, but did not incorporate
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dipolar interactions. Similarly, Dolinsek (4) reported, using
a two-dimensional technique, the spin-echo decay behavior
of a glass, but again did not provide a quantitative theory to
interpret the results. In this paper, we provide the first quan-
titative theory of spin-echo decay behavior in the presence
of dipolar interactions, and we test the theory by using results
obtained on a wide range of materials of general chemical,
geochemical, and materials science interest (such as alumi-
nas, perovskites, and zeolites). Such studies should provide
a theoretical basis for testing models of, e.g., semiconductor
(3) or glass (4) structure,

EXPERIMENTAL

NMR aspects. NMR measurements were performed on
“homebuilt” NMR spectrometers, which operate at §.45 or
11.7 T and use Oxford Instruments (Osney Mead, UK)) su-
perconducting solenoids, together with Nicolet {Madison,
Wisconsin) model 1280 computer systems and Henry Radio
(Los Angeles, California) Model 1002 and Amplifier Re-
search (Souderton, Pennsylvania) Model 150LA or 200L
radiofrequency amplifiers. The sample size was typically one-
half the length of the RF coil, in order to minimize RF field
inhomogeneity effects. The RF amplification was initially
varied to determine the strongest pulse yielding an almost
sinusoidal dependence of the intensity of the central line on
the pulse length, as a proof of selective excitation (5). For
the echo measurements, a pulse program of two in-phase
pulses was used, combined with a standard CYCLOPS phase
cycling (6). Data acquisition started at time A (the pulse
separation) after the second pulse. The area under the Fou-
rier-transformed lineshape was used as a measure of the echo
intensity. The recycle time was always chosen after deter-
mination of the spin-lattice relaxation time, T',, in order to
exclude saturation effects.

Chemical aspects. Ruby laser rods (Cr** dopant level
~0.05% ) were purchased from General Ruby and Sapphire
Corp. (New Port Richey, Florida). Dr. R. J. Kirkpatrick
(University of [llinois at Urbana-Champaign ) provided the
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mineral albite. Corundum powder was from Fisher Scientific
(Fair Lawn, New Jersey), and y-Al,O; was from Alfa Prod-
ucts ( Danvers, Massachusetts ). Two AIN samples [AIN(1),
AIN(2)] were provided by VEB Kombinat Keramische
Werke Hermsdorf (7) while a third sample [AIN(3); 98%
purity ] was purchased from Aesar (Seabrook, New Hamp-
shire). NaNO; was from Mallinckrodt (St. Louis, Missouri ).
NaNbQO; and LINbO; powders (99.9% ) were purchased from
CERAC (Milwaukee, Wisconsin). NaA zeolite was the gift
of Dr. E. Flanigen (Union Carbide Corp., Tarrytown, New
York). The Na;,Cas4A sample, Zeosorb 5SAZ, was pur-
chased from VEB Chemiekombinat (Bitterfeld, Germany).

THEORETICAL CONSIDERATIONS

A situation often met with in NMR studies of powdered
inorganic solids (&) can be represented by the equation

|42 > Aol > | =~ |G, (1]

where .#7 is the Zeeman interaction. .# the quadrupolar
interaction, # the dipolar interaction, and .# § the second-
order quadrupolar interaction. In general, the first-order term
of the quadrupolar interaction, # ‘Q' | overwhelmingly dom-
inates the homonuclear and heteronuclear dipolar interac-
tions, -#. while the second-order quadrupolar interaction,
H '03', is about as important as the dipolar interactions. The
effect of dipolar coupling on the central transition in terms
of the second moment is well known and has been treated
theoretically by Kambe and Olom (9) and by Mansheld
(10). The expressions for the corresponding second moments
can be summarized by Van Vleck’s formula for identical
spins as [cf. Abragam (71, pp. 129-130)]

Mo = F()y*h2 S b2
/

= F(Dy*h 3 [—23———————-1 — fos“e"]h- (2]
i ry
where
7+ 1
F(I):—(—T——)' [3]

Equation [ 3} together with Eq. [ 2] describes the second mo-
ment due to homonuclear dipolar interactions in the absence
of a quadrupolar coupling. It has been shown (9-/7) that
in the presence of a quadrupolar coupling, the second mo-
ment of the central transition due to homonuclear dipolar
interactions can be described by Eq. [2] by introducing dif-
ferent factors F([I). If all spins are subjected to the same
quadrupolar coupling {same magnitude and orientation of

the electric field gradient), the spins have been called “like
spins™ and the corresponding factor, F([f) = F , is given by

e
L7

N (201 + 1)+ 31(1+ 1)+ 13/8}
18(21+ 1) '

(4]

However, if the quadrupolar coupling of the two spins is
different, but the central transition frequencies are still the
same, the spins may be called “semi-like spins” and the cor-
responding factor, F() = Fg, , is given by

Fa(ly=Fy
_ljarg+ny @i+ 2r+)y
9 3 T Ty } (51

Comparison of these factors shows that they are the same,
within about +20%, and are thus relatively unimportant with
respect to linewidth analyses. We now consider the effects
of these dipolar interactions on the spin-echo decay.

Using the interaction representation, transformed by the
Zeeman interaction, we can describe in superoperator no-
tation (/2) the intensity of an echo occurring at times 2A
(as indicated in Fig. 1A) by the trace

EQ2A) = tr{p(2A)], } = (1. [p(24)), (61

where

[p(24)) = exp{ ~iHAlexp | —i#P7;}

X exp{—iHAlexp{—i# 7 }[po). [7]

For convenience. we use the transformation

H.=exp{—iPar,} H expliflyry) [8]

and can then write

[p(24)) = exp{~iHAjexp{ —iH A}

X exp{ —i#my jexp{ —i# 7} po), [9]
where the Hamiltonians #2, ( #2,) and .#, all expressed in
the interaction representation, describe the interactions dur-
ing the first (second) pulse and in the absence of RF exci-
tation, respectively, and they may be approximated by means
of the Magnus expansion (/3) as

(10]
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Since the quadrupolar interaction dominates, and the in-
teraction of the spins with the RF field, #yg, is assumed to
exceed second-order quadrupolar contributions as well as
the dipolar interactions amongst the spins, we retain during
the RF excitation only the first-order quadrupolar term,
H 'y, and the first-order part of the RF excitation, H e
In the absence of RF excitation, we consider the quadrupolar
effects in first order, as well as in second order, 7/ S+
}f/ , and the dipolar interaction in first order, .# Y. Fi-
nally, in the high-temperature approximation, we have

loo) ~ 2 11%).

J

[11]

Now, in order to determine the spin-echo decay behavior,
we calculate the second moment, Mg, of the envelope of a
train of echoes, as

2

M"E—-—

O d2a)y? E(28)

2A=D

[12]

We find, introducing Egs. [6]-[9] into Eq. [12], that

Moy = (1/4WU-[H, [, p,]])
+ 201\ H, [ A, 011D

+ AL A pdD ), T3]

where

\P])=CXD{"iij’sz}eXp{‘fflTl}‘Po)- [14]

We consider first the case of a purely homonuclear dipolar
coupling between like spins (i.e., all spins are subject to the
same quadrupolar coupling) on the spin-echo decay of the
central transition and neglect second-order quadrupolar ef-
fects, ie. A4 O < (#D. The first-order quadrupolar
interaction is given by the expression

HG ==L 3L - 10+ 1) [15]
where
wor = 92—0(3 cos’f — 1 + nsin?B cos 2«),  [16]
and
wQ 38 QQ
I 17
T oy T mICI- 1) (7]

The quantities in Eqs. [15]-[17] have their usual meanings,
with « and 8 denoting the azimuthal and polar angle of the
electric field gradient tensor in the laboratory-axis system,
respectively.,

We will demonstrate the calculation of the second moment
of the spin-echo decay by using selective excitation with an
in-phase pulse pair, that is, a ““Hahn” echo sequence using
selective 7 /2 and selective w pulses, where a selective 7 pulse
means that, first

[18]

2WawrpT = 7,

with

= (2VII+ 1) = m(m + 1). [19}
Second, the bandwidth of excitation, which is about 2/#r
for a pulse of duration 7, is not much larger than the linewidth
of the transition under investigation. Thus, we have for 2,
and #2,, Eq. [14], for selective excitation of the central tran-
sition, and assuming y pulses,

P/ N S—
INERVIE
 JEL — 1) [20]
2T+ 1/2)

Now, since we are assuming selective excitation of the
central transition, the echo sequence can be interpreted as a
result of an initially applied 3w /2 pulse (cf. Eq. [14]), and
the following propagation of the density operator: first, by
the operator 5, for a time interval A, second, by the operator
A for the time interval A (cf. Eg. [9]). This selective
3w /2 pulse changes only the diagonal elements of the equi-
librium density operator (p, = I.) corresponding to the cen-
tral levels into /, components, while leaving the diagonal
elements (for |m| > 1/2) unchanged (10). So, p, has only
nonvanishing /, components for |m| = 1/2. From this it
can be seen that p, commutes with 7/“) [1/“) al=0.
The selective = pulse, which must be used for the transfor-
mation in Eq. [8], exchanges only, for a diagonal matrix,
the elements corresponding to the central transition. Thus,
since # {5’ is symmetric in the main diagonal, we find from
Eq. [8] that 7( “) .7/ 5. For a homonuclear dipolar in-
teraction we con51der the Hamiltoman for two spins, as re-
ported previously by Mansfield ( /0). Restriction to the first-
order term yields

AL = —aI:I’:+g(I+IL+I'+L), [21]
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which is secular with respect to (1. + I.)yand (IZ + I?), the
Zeeman and first-order quadrupolar terms for two like spins.
Since #4) = Y [ Y, #L1=0,and [#Y), p] =
0, we have to calculate only the expressions in Eq. [13]
for # = #L and #, = #), where #;) follows from
Eq. [8] and 1s given by

L) = exp{—iPyr, ) H Y expliPyry ). [22]

From the matrix elements of #5’ and #,. necessary
to calculate the traces in Eq. [13], we retain the following
elements [sec also Ref. (11, p. 129) and Ref. (/0)]: the di-
agonal terms (m, m' | # S |m, m'), (m, m' | #S) 1m, m'),
and the off-diagonal terms (m £ 1, ml.#{)” |m, m+ 1)and
(m 1, m|H#5 |m, m = 1). Since we are exciting and
observing a single transition only, the matnix elements of 7,
are required to correspond to transitions between the central
levels, ie., (m, +1/2| I, |m,—1/2)and (+1/2, n'| 1 |—1/
2, m") (10, 11).

For the calculation of the matrix elements of the trans-
formed dipolar Hamiltonian, .# (Dr” we now need to consider
two cases: First, if only the excited levels are involved, we
can view 5, as being transformed by a nonselective pulse:

A = exp{in(I, + I')} Fp exp{ —in(I, + I})}

and

HE) =AY = ~a1:1;+§(1+1'_+1;1;). [23]

For matrix elements relating the two Zeeman levels of the
excited transition of one of the two spins to different spin
states of the other spin, i.e., the Zeeman levels are not affected
by the excitation, a selective pulse acts only on the spins in
the excited levels, and the transformation, given by Eq. [22],
yields the Hamiltonian

a a
~ ]XI.,\’ + = I,‘]|

L) = +al.l. - 5 >

[24]

Summing up the appropriate matrix elements gives the
expressions for the second moment of the envelope of the
Hahn-echo train, M. In analogy to Eq. [2], we define Mg
as

Moy = E"y*h2 3 b2, [25]
J

where E{" is a spin-dependent factor, “L” refers to “like

spins,” and the labelt n =0, 1, - - - [n <(/ + 1/2)] denotes

the central transition and the first satellite transitions, re-

spectively. For the central transition, we find

2
E = m(l TAWL p AW p+ W), [26]

where the W, are defined in Eq. [19]. We prefer to use the
notation given in Eq. [26] since it reveals directly the tran-
sitions in the spin system: “1” represents the diagonal con-
tribution of the central levels, i.e., neither spin changes its
quantum number, due to J?(D”, until the echo forms.
W2, ,, represents iransitions where, until application of the
first pulse, spin flipping occurs between the central levels,
and between the first pulse and the echo there is no change;
W4, ,, stands for flip-flops during both time periods; and,
finally, W4, ,, stands for flip-flops in the transitions next to
the central one (+£3/2) during both time periods.

In the notation of Eq. [26], Fi in Eq. [4] can be recast
as

2
F“9(21+1)

1
X2 2 m+ 4w, + AW, + 4w, ). [27]

m=-1

Comparison with Eq. { 26] shows that, except for terms with
m = *1/2, the diagonal contribution cancels for the echo;
i.e., spins with |m| > 1/2 which do not flip until the echo
forms do not contribute to the echo decay. Also, the flip-
flop term between the levels next to the central ones is re-
duced by a factor of 4, but its contribution in both Eq. [26]
and Eq. [27] is negligible. Inserting spin quantum numbers,
we obtain the ratios between the ordinary second moment
of the central transition for like spins and the second moment
of the spin-echo decay (F\”'/E'®) given in Table 1. As
may be seen from these results, the ratios are essentially in-
dependent of the spin-quantum number, /. As might have
been anticipated, the Hahn spin-echo decay behavior of the
“isolated” central transition is mainly governed by the di-

TABLE 1
Ratio between the Second Moment of the Fourier Transform
of the Envelope of the Echo Decay and the Ordinary Second
Moment, for Homonuclear Dipolar Interactions and Various
Spin Quantum Numbers, 1

I=13n2 I=75/2 [=1772 I1=972
ECIFRS 0.455 0.427 0.431 0.446
VE JEL 1.48 1.53 1.52 1.50

¢ Ey corresponds to the second moment of the Fourier transform of the
envelope of the spin-echo decay.

¢ F, corresponds to the ordinary second moment, for a homonuclear di-
polar interaction. From Eqs. [26]} and {27] in the text.
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polar interactions between the fraction of spins having mag-
netic quantum numbers of m = £1/2.

If like spins experience a slightly different quadrupolar
coupling, i.e., the first-order quadrupolar interactions are dif-
ferent [such spins have also been called “semi-like” spins;
cf. Ref. (11, p. 130)], their central transition frequencies
are still the same, but the satellite transition frequencies can
be very different. In this case it can be concluded from the
above analysis that the spin-echo decay for the central tran-
sition will not be changed unless there is an additional fre-
quency shift for the central transition as well, due for example
to a chemical-shift nonequivalence.

Satellite transitions. For a single crystal, satellite tran-
sitions can usually be observed. We have calculated the sec-
ond moments given below (in terms of Egs. [4] and [26]),
for each of the satellites for a single-pulse experiment, as well
as for the echo envelopes, and found the following:

For the first satellites (for I = 5/2),

2 ! 3 3 ,
=551y 2 Z m Al + 4ty
m=—I|
+2W'4,1,2+2W’33/3) [28]
ENY = ———(54+4W2,,, +4W*4, ,
9(21+1) 2t 4
I r4 ! 74
+E”’,|/z+;”'+3/3 . [29]
For the second satellites (for 7 = 5/2),
5 2
R
L9214+ 1)
I
X(2 3 m+ 4wy, + 4w, + 2w 5 [30]
m=--1
E2 = <
9271+ 1)
1
(l4+4W 3/’7+4W +}/')+ W+|/2). [31]
For I = 5/2, the intensity ratios are
A_RRD 289 P27
E. 1377 E{M  s12/4° ED 1217

The above results for the spin-echo decay of the satellite
transitions apply only to like spins. For semi-like spins, the
spin-echo decay of the satellite transitions can be slowed
down considerably because even slight differences in the
quadrupolar couplings of neighboring spins (which do not

affect the central transition) can cause great differences in
the satellite transition frequencies, and spin exchange is no
longer effective.

If second-order quadrupolar effects are present, # & Q ' must
be conSJdered as well, and unfortunately analytical expres-
sions for #4 Q are rather lengthy However, when consid-
ering a given transition, HG Q can be v1ewed as a fictitious
spin-1/2 operator, in which case we have 7/ @ = = Qo-, where
1 is the orientation-dependent second-order frequency shift,
and ¢. denotes the = component of the spin-angular mo-
mentum operator for / = 1/2. Since a selective m pulse con-
verts o into —o., it can be seen from Eq. [13] that, for a
Hahn-echo sequence, the second-order quadrupolar inter-
action is greatly reduced, as in the case of a resonance offset
effect. Clearly, this is only a qualitative description of the
influence of the second-order quadrupolar interaction, and
its part which does not commute with the first-order inter-
action may govern the spin-echo decay if no dipolar inter-
actions are present (J3). However, as long as the Zeeman
levels represent stable states within the time scale of the for-
mation of the spin echo, the influence of the second-order
quadrupolar interactions can be neglected when using a se-
lective n/2— = pulse sequence.

The effect of a 90° phase shift between the 7/2 and the
w pulse can be calculated by using an x pulse instead of a v
pulse for the first /2 pulse. In this case, as long as a selective
excitation is guaranteed, p, in Eq. [{4] contains /, compo-
nents for m = +1/2 and is diagonal for [m| > 1/2, as before,
and the spin-echo decay will not change, except that the
echo is now in-phase with the one-pulse free-induction decay.

For a selective (w/2)—~—(7/2), pulse sequence, we
calculate the same numbers for £}, within about 10%
(neglecting second-order quadrupolar effects). These results
have been proven experimentally by measurements on single
crystals. However, since the second pulse is now a = /2 pulse,
it does not reduce the second-order quadrupolar interaction
as is the case with a m pulse. Also. resonance offset effects
are not eliminated. Especially for powders, with a large spread
in second-order frequency shifts, or a chemical-shift anisot-
ropy, a faster echo decay 1s observed experimentally. This
effect can even dominate with slowly decaying echoes, as
found, for example, with several zeolites having low Al con-
tent (see below).

Reduced second moments.  As was shown by Kambe and
Ollom (9) and by Mansfield (/0), the frequency shift due
to the first-order quadrupolar interaction restricts spin ex-
change to the same transition of neighboring nuclei. This is
why, for calculation of the second moment of the central
transition, only the matrix elements of the homonuclear di-
polar interaction (which are diagonal or describe the spin
flipping between the same transitions) must be added. We
have also seen for a w/2-—= pulse sequence that the spin-
echo decay of the central transition is overwhelmingly dom-
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inated by the dipolar interactions of the spins populating the
Zeeman levels with m = +1/2. Therefore, it should be pos-
sible to descnbe the spin-echo decay of the central transition
by its ordinary second moment for the one-pulse response,
where we discard for the sum of the dipolar matrix elements
all those elements which involve Zeeman levels for which
|m| > 1/2. We thereby calculate a reduced second moment,
characterized by the spin-dependent factor (cf. Eq. [4])

1 2
/2 2
Fe 9 [(21 +1)

(21+1), 21+1)
2 32

}, [33]

where the labels “ex’” and “+1/2” refer to the fact that only
the central levels are excited and spin exchange among the
central levels is still allowed. Inserting spin quantum num-
bers, I, we find the values given in the first row of Table 2.
Comparison with Table 1 shows that the reduced second
moment for the free-induction decay describes very well the
w/ 2— = spin-echo decay envelope for the selectively excited
central transition.

We now suppose that the resonance frequencies of the
central transitions of two neighboring I spins are different,
This might be caused by very different quadrupolar cou-
plings, or by chemical-shift interactions. In this case the spin
exchange between the central levels of neighboring [ spins
can be completely suppressed. In order to describe the change
in the spin-echo decay we again calculate a virtual (reduced )
second moment of the free-induction decay. We sum up
only matrix elements of the homonuclear dipolar interaction
involving the central levels, m = +1/2; however, we also
discard all matrix elements responsible for the spin exchange.
The result is that for spins with m = £1/2, only the diagonal
part of the homonuclear dipolar interaction contributes to
the second moment. For the reduced second moment, we
find that the spin-dependent factor is

+1/2 2

Frei™ = 921+ 1) [34]
Inserting spin quantum numbers, we obtain the values given
in the second row of Table 2. Comparison of Eq. [34] with
Eq. [33] (Table 2) shows that the total suppression of spin
exchange among the central levels causes a large decrease in
the corresponding second moment. We now use these results
to describe the influence of an additional heteronuclear di-
polar interaction on the spin-echo decay of the central tran-
sition.

Homonuclear and heteronuclear dipolar interactions.  If,
in addition to a homonuclear dipolar interaction, a heter-
onuclear coupling is present, an exact calculation of the spin-
echo decay 1s very complicated. The nonresonant S-spin sys-
tem is responsible for two main effects. First, by influencing
the resonance frequency of the I spin (IS interaction ), which

TABLE 2
Ratio of the Reduced Second Moments to the Ordinary Sec-
ond Moment of the Homonuclear Dipolar Coupling, for Dif-
ferent Spin Quantum Numbers, /

=3 I1=572 =177 I=9/2
FRPIR 4/9 417107 324/881 729/1961
Frlih 4/81 47321 4/881 4/1961

Note. F £ represents the sum of matrix elements of the dipolar Ham-

iltoman which involve only the central levels (m = +1/2), but still allowing

for spin exchange among the central transitions. F £/? indicates no exchange

was allowed for during collection of the appropriate matrix elements, m, m’
= *1/2. From Egs. [33] and [34] in the text.

causes line broadening, it suppresses the spin flipping between
like nuclei, and thus the spin-echo decay is slowed down.
Second, spin flipping between the S spins (SS interaction)
will decrease the phase coherence in the I-spin system, which
tends to destroy the formation of the spin echo. In order to
describe the spin-echo decay for two coupled spin systems
quantitatively, we make the assumption that the above-
mentioned processes can be approxtmated by the corre-
sponding second moments, MY, M5, M3, M3, higher-
order moments being neglected. As we nucntioned above,
the spin-echo decay for a purely homonuclear dipolar inter-
action is well described by the reduced second moment,
where we take only the central levels into account ( Tables
I and 2). Upon introducing an additional heteronuclear
coupling, the spin flipping in the [ system vanishes com-
pletely, since the secular part of the homonuclear interaction
no longer contains x and y components of the angular mo-
mentum operators (which leads to further truncation of
J p). Thus, the second moment of the spin-echo decay for
the I-spin system [denoted as M,g(7)] in the presence of a
sufficiently strong heteronuclear dipolar coupling decreases
drastically, to the value

w Frel2(1)

My (1) = M3 (D [35]

If a heteronuclear coupling causes this drastic decrease,
the coupling to the S-spin system, ML, will in general be
larger than M,:(7). So, the two spin systems appear to be
strongly coupled, and we approximate the influence of the
S-spin system by assuming an echo intensity, £(2A), having
the form

Mae(])

EQ2A) = exp{~~7—(2A)2}

Mae(S)

> (2A)“} . [36]

X exp{—
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FIG. 1. (A) Spin-echo pulse sequence used to record T, data. (B)
Semilogarithmic spin-echo decay data obtained on «-Al,O; (corundum)
single crystal following a selective n/2 (2.4 us)—selective 7 (4.8 us) pulse
pair, at 11.7 T. The crystal was aligned (¢ axis parallel to the static magnetic

field) by measuring the frequency difference between the central and satellite
transitions.

where Mg (1) refers to the second moment of the spin-echo
decay, Eq. [35], in the I system, if no spin flipping occured
in the S-spin system.

If both I- and S-spin systems are subjected to strong quad-
rupolar coupling, Mg (S) must be calculated from Eq. [35].
In the special case that the S spins have a vanishing quad-
rupolar coupling (spin exchange is not restricted), or § =
1/2, Mye(S) is given by van Vieck’s formula for the S-spin
homonuclear dipolar interaction, Egs. {2] and [3].

The 1 /edecay time deduced from Eq. [ 36] for a Gaussian
decay of the spin echo now becomes

Ty = VZ/[M25(1)+M25(S)]- [37]

If the heteronuclear dipolar coupling is negligible, M, (S)
=01in Eq. [37], then M,:([) can be replaced by A5, given
by Egs. [25] and [26], and we obtain

Ty = V2/ M.

RESULTS AND DISCUSSION

[38]

Before we compare the theoretical predictions with the
experimental results obtained for different nuclei in a vanety

of inorganic solids, we will briefly consider the effects of se-
lective /nonselective excitation. A not entirely selective ex-
citation can severely alter the results of spin-echo experi-
ments, and this topic is addressed in a forthcoming paper.
We give a qualitative description of these results here, since
they represent one means of determining selectivity.

Excitation aspects. We show in Fig. 1B the spin-echo

amplitude as a function of pulse spacing (2A) for nonselective
excitation of the Al spins in a ruby (Cr** -doped corundum,
a-AlL,O,) single crystal aligned with its ¢ axis parallel to the
static magnetic field. While the long-time echo-decay be-
havior appears monotonic, there are clearly short-time os-
cillations, which are caused by components of the magne-
tization precessing at the quadrupole frequency. The origin
of these oscillations has been described previously (/4) and
can be used to measure reduced powder spectra for half-
integer-spin quadrupolar nuclei.

In Fig. 2 it can be seen that for a Hahn-echo sequence on
corundum powder, the T, values are hardly influenced by
the RF excitation, but the intensity of the spin-echo for A
= ( can be much smaller than the intensity of the free-in-
duction decay observed after a single 7 /2 pulse. This decrease
of the spin-echo amplitude with increasing nonselectivity of
excitation is typical for the in-phase  / 2— m pulse sequence:
If the excitation affects also the satellite transitions, the effect
of the second pulse for refocusing the central transition de-
creases. It also creates an ordinary free-induction decay due
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FI1G.2. Comparison between the intensity of the 130.2 MHz (11.7 T)
Al free-induction decays in a-Al,O; (corundum powder) and the echo
intensity for a spin-echo sequence, using selective 7 /2 pulse widths of 03, 2
us, ®,4 us; 0, 8 us; O, 12 us; and W, 25 us. The recycle time was 30 seconds.
The five intensities on the left (FID) represent the observed free-induction
decay amplitudes following a /2 selective pulse at each RF field strength.
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FIG. 3. Semilogarithmic spin-echo decays for the 130.2 MHz (1L.7 T)
YAL1/2.-1/2(3), —1/2, -3/2(®), and —3/2, —5/2 (+) transitions in
a single crystal of ruby; 15 us /2 and 30 us = pulses were used. The recycle
time was 1 s. The crystal was aligned by measuring the frequency difference
between the central and satellite transitions.

to spins not affected by the first pulse. This free-induction
decay, especially its slowly decaying central transition com-
ponent, is superimposed on the spin echo at a time 7 = 2A.
Since the second pulse represents a weak pulse for the satellite
transitions, the second free-induction decay is in-phase with
the second pulse. Thus, for pulse distances smaller than the
decay of the second component, the spin-echo amplitude is
even more suppressed.

Now, the difference between the in-phase #/2—7 se-
quence and the 90° phase-shifted = /2— = pulse sequence is
given by this second free-induction decay. For the 90° phase-
shifted sequence, the free-induction decay caused by the sec-
ond pulse is 90° shifted with respect to the spin echo. Thus,
the experimentally observed signal, at t = 2A, appears to be
phase shifted compared with the one-pulse free-induction
decay. However, the amplitude of the experimentally ob-
served echo is not affected as much as that for the in-phase
pulse sequence. Since for both pulse sequences the spin-echo
decay depends on the bandwidth of excitation, it is critically
important to prove selective excitation if spin-echo experi-
ments are to be interpretable. Selective excitation can be
proven by recording the intensity of the free induction as a
function of the pulse duration {5), or by utilizing the above-
mentioned effects on the spin-echo phase and amplitude.

Spin-echo results. Experiments on a ruby single crystal
revealed a spin-lattice relaxation time, 7', of =~ 100 ms. The
linewidths of the transition were 8 kHz for the central and
9 kHz for each satellite transition. The theoretical values for
Gaussian lines are 7.3, 6.9, and 6.0 kHz, assuming a second
moment of the central line (Egs. [4], [28], and [30]) of

3.75 X 108s72(15). The deviation of the experimental values
from the theoretical ones, as well as the short T',, are pre-
sumably due in part to increased doping of the ruby crystal
with paramagnetic centers. Figure 3 shows the spin-echo de-
cay envelopes for a crystal whose ¢ axis was parallel to the
static ficld. For a Gaussian decay, the 1 /e decay time, T,
of the echo train follows from the second moments, My
(Egs. [38].[25], and [26]). The theoretical values, assuming
an M, (Eq. [2]) of 3.75 X 10® s 2, are

T(ZOE) = 112 us (central line),
T(ZIE) = 115 us (first satelhite),
TS5 = 119 us  (second satellite).

We obtain good agreement for the central transition T(Z%) =
130 + 10 ps, but the difference between theory and the ex-
perimental values of T(ZQ =160 £ 15 us and T(ZZE) =220 £
20 us for the satellite transitions shows the great sensitivity
of echo measurements on satellite lines to lattice defects.
Figure 4A shows the echo-decay result for corundum powder.
The measured T is given by the homonuclear dipolar in-
teraction, as for the single-crystal experiments, and we find
Toe = 140 £ 20 us, in accord with the single-crystal result.

The spin-echo decays of three different types of AIN pow-
ders are shown in Fig. 4B. The static spectrum of sample |
has a width of 6.6 kHz and a T, of about 5 s, while the
linewidths and 7', values for samples 2 and 3 are 8.2 kHz,
1 s and 14 kHz, 1 s, respectively. Using the theoretical M,e
of 2.1 X 10% s72(7), we estimate that 7, for the Gaussian
spin-echo decay should be 150 us (assuming a neghgible
influence of the '"*N nuclei). The experimental results are
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F1G. 4. Spin-echo decays for 2’Al at 130.2 MHz (11.7 T) in (A) pow-
dered corundum and ( B) several AIN powders. For corundum, the selective
« /2 pulse width was 27.5 us and the selective = pulse width was 55 us. For
AIN, the selective x/2 pulse width was 16.5 gs and the selective = pulse
width was 33 ps: &1, AIN(1); @, AIN(2); and X, AIN(3).
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180 + 20 us, 210 + 20 us and 260 + 25 us. The samples
having the largest linewidths and shortest 7', values are those
which might be supposed to be the least homogeneous (both
chemically and crystallographically ), resulting in a length-
ening of T, because of suppression of spin-flip processes
for the central transition.

For v-Al,O;, the spin-echo decay shown in Fig. 5 reveals
a T»g of about 580 + 30 us (7, = 50 ms). v-Al,O;, which
1s thought to have a defect spinel structure, has two different
Al nuclei which can be resolved in high-resolution “magic-
angle” sample-spinning spectra (/6). For each unit cell (32
oxygen atoms) we have 8 tetrahedrally coordinated Al atoms
and 13.33 octahedrally coordinated Al atoms. To estimate
the upper limit for 75 of v-Al,O5, we need to consider the
two types of Al nuclei as an IS system; i.e., each species is
mutually coupled by a hereronuclear dipolar interaction.
Since single crystal X-ray diffraction data on y-ALO; are
not available, for an estimate of the strength of this inter-
action we may use the density of v-Al,O; compared to that
of a-Al,O;. We then obtain ratios of about 1.1, 3.0, and 1.8
for the total number of Al atoms and tetrahedrally and oc-
tahedrally coordinated Al atoms, respectively (/7). With the
known MY for a-ALO; and Eqgs. [34] and [ 38 ] we can then
estimate a 7> of about 730 us for each site. From the ex-
perimental observation that the separation between the two
Al resonances in y-Al,Oj5 is not complete, it is clear that the
observed T, should be somewhat smaller than this value,
but much longer than that for a-Al,O;. Thus, the experi-
mental value of about 580 us can be easily understood.

In the zeolite Linde A, calculation of the second moment
for the homonuclear Al-Al interaction, considering the 21
nearest Al neighbors, gives M, ~ 8.3 X 10%s72. Assuming
a Gaussian spin-echo decay and a vanishing heteronuclear
coupling to the Na and H nuclei (due to fast particle reori-
entation), one expects 7> = 750 us. Comparison with the
experimental T,g, 730 + 50 us, shown in Fig. 6A gives good
agreement (7, = | ms), supporting the assumption of only
like Al atoms in the NaA framework. The spin-echo decay
for a hydrated Na, (Ca,,A zeolite (T, = | ms) shows the
same T,g, indicating that the single-site symmetry is not
greatly disturbed by cation substitution, at least in a hydrated
sample. For the hydrated zeolite NaA at —130°C, we mea-
sured a T>¢ of 550 + 30 us (7, = 30 ms). Since there is not
thought to be any large structural change in this temperature
range, we believe that at low temperatures the 2’Al-'H di-
polar interaction contributes to the linewidth of the *’Al res-
onance (18), and most likely the stronger H-H dipolar in-
teraction shortens the Al decay from that observed at room
temperature. The **Na and ?’Al resonances in the natural
mineral albite (NaAlSi;Oj; T, = 6 s for both nuclei) showed
linewidths of about 6.5 and 4.5 kHz, respectively. The second
moments (18 neighbors) are 3.2 X 10° and 5.3 X 10®s?
for the Na-Na and Al-Al couplings, respectively. The theo-
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FIG. 5. Spin-echo decay for Z’Al in ¥-ALO; at 11.7 T. The selective
/2 pulse width was 9.5 us, and the selective = pulse width was 19 us. The
echo decay represents contributions from both tetrahedral and octahedral
sites.

retical prediction (Eqs. [36] and [37]) from these values
yields 7', values of about 3.0 ms. The experimental results
are 2.7 = 0.2 ms, for both decays, as shown in Fig. 6B.

In NaNOs, the *Na resonance (T, = 5 s) was recorded
at 1.7 T and revealed a symmetric line of 1.6 kHz width.
The second moment of the Na-Na interaction (for the 24
nearest neighbors)is 12 X 10%s72. The '*N nuclei are thought
to have a neghgible influence on the Na resonance, due to
their small gyromagnetic ratio and relatively long distance
to Na. From the second moment, we calculate (by using Eq.
[38]) an echo decay T = 600 us. Comparison with the
experimental value of 650 + 50 us obtained from Fig. 7A
suggests that the slight discrepancy could be due to the in-
fluence of the "*N nuclei, which, due to a weak N-N inter-
action, tend to lengthen the spin-echo decay somewhat, al-
though the difference is within our experimental error.

In KNbO,, the **Nb resonance (T, =~ 350 ms) showed a
linewidth of about 23 kHz, mainly due to second-order
quadrupolar effects. The potassium nuclear spin has essen-
tially no influence on the behavior of the Nb spins, due to
its very low gyromagnetic ratio (the K-K second moment
is about 1.1 X 10% s72?). Taking into account the 18 Nb
nearest neighbors, the second moment of 5.6 X 107 s ™2 pre-
dicts a T,¢ of about 280 us, which is in quite good agreement
with the observed value of 220 + 20 us (Fig. 7B).

In NaNbO;, the observed linewidths for “*Nb (7, =~ 350
ms) and »*Na (7, = 18 s) resonances were about 16 and
5.5 kHz, respectively. The second moments of the Na-Na
and the Nb-Nb interactions (again considering 18 near
neighbors) are 1.36 X 107 and 6.53 X 107 s 2, respectively.
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FIG. 6. Spin-echo decay data for zeolites and albite. (A ) Static 93.8 MHz (8.45 T) ¥’Al spin-echo decay behavior for fully hydrated zeolites NaA (O)
and Na,;Ca;,A (+) at room temperature and NaA (@) at —130°C, using selective /2 pulse widths of 38 us and selective = pulse widths of 76 us. (B)
Static 130.2 MHz (11.7 T) Al (1) and 132.2 MHz ?*Na (A ) spin-echo decay results on the mineral albite, using /2 pulse widths of 7.5 us and selective

7 pulse widths of 15 us.

From Eq. [37] we estimate an echo decay of about 1.6 ms.
Comparison of this value with the experimental result of 75
= 1.2 ms for the **Na resonance and 1.3 ms for **Nb reso-
nance, as shown in Fig. 7, reveals a small discrepancy, which
is probably not due to the finite lattice sum for the second
moments, but rather to incomplete suppression of spin flip-
ping in the Nb central transition.

For LiNbO;, we measured only the Nb resonance (the Li
signal was very broad ), which revealed a linewidth of about
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FIG. 7. Hahn-echo decay data for some niobates and sodium nitrate.

(A) Static 132.2 MHz (11.7 T) **Na spin-echo decay behavior for NaNbO,
(m) and NaNO, (O), using a selective «/2 pulse width of 7.5 us and a
selective 7 pulse width of 15 us for NaNbO, and 18 and 36 us for NaNO;.
(B) Static 122.2 MHz (11.7 T) **Nb Hahn-echo decay behavior for KNbO,
(A)Y. LINDO; (X)), and NaNbO; (@), using selective x /2 pulse widths of 5
us and selective = pulse widths of 10 us.

25 kHz (7, = 350 ms). The second moments, including
the 18 nearest neighbors, are 7.9 X 107 and 8.2 X 107 572
for the Li~Li and Nb-Nb interactions, respectively. Because
of the much larger Li gyromagnetic ratio (194.3 MHz at
11.7 T), the Li-Li and Li-Nb interactions are stronger than
those in NaNbQO; and tend to shorten the spin-echo decay.
Application of Eq. [37] predicts a T, for the Nb nuclei of
about 670 us, while experimentally we find 75 = 650 + 60
us (Fig. 7B).

The results that we have presented above show, with few
exceptions, that the spin-echo decay behavior of nonintegral-
spin quadrupolar nuclei in a wide variety of inorganic sol-
ids—ranging from highly ordered ruby single crystals to ran-
dom powders of zeolites and aluminas—can be quantita-
tively explained in terms of homonuclear and heteronuclear
dipolar interactions which are modulated by various sample-
dependent properties, such as the presence of chemically
shifted resonances in y-Al,Ojs, the freezing of zeolitic water
in the zeolite Linde A, or lattice imperfections. A detailed
analysis of the spin-echo decay rate, T-g, provides a poten-
tially important probe of local structure, which complements
existing chemical-shift and electric field gradient tensor in-
formation,
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