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Abstract

We describe a novel approach to deducing order parameters and correlation times in proteins using a Bayesian sta-
tistical method, and show how likelihood contours, P(τ,S), and confidence levels can be obtained. These results are
then compared with those obtained from a simple graphical method, as well as those from Monte Carlo simulations.
The Bayes approach has the advantage that it is simple and accurate. Unlike Monte Carlo methods, it gives useful
contour plots of probability (also not provided by the simple graphical method), and provides likelihood/confidence
information. In addition, the Bayesian approach gives results in very good agreement with those obtained from
Monte Carlo simulations, and as such use of Bayesian statistical methods appears to have a promising future for
studies of order and dynamics in macromolecules.

Introduction

NMR relaxation and interference are very important
tools for investigating structure and dynamics in pro-
teins. Using such measurements, together with suit-
able analytical models, it has been possible to obtain
pictures of molecular motion in proteins, but there is
always the need to consider just what type of model
should be used to analyze the results. The ‘model-free’
approach in one form or another (Lipari and Szabo,
1982a,b) is currently the most common method used
to relate the experimental measurements to motional
parameters: the order parameter (S), the overall mole-
cular rotational correlation time (τc) and the internal
rotational correlation time (τe). Typically, the relax-
ation equations are solved by using an optimization
algorithm which gives a best fit to all of the data, and
values for S2 andτe are reported for each backbone
atom investigated, together with a single value for the
overall rotational correlation time,τc. Errors in S2 and

∗To whom correspondence should be addressed.

τe can then be estimated by performing Monte Carlo
simulations.

More recently, Jin et al. (1997) have proposed an
alternative, graphical approach in order to determine
which regions of S2, τc, τe space are permissible,
based on estimated experimental uncertainties. They
conclude that in some cases the order parameters (and
correlation times) are rather inaccurate, since in this
graphical method they may range over very large
regions of permissible S2, τe space.

It is, of course, possible to learn more about the ef-
fects of experimental errors on any conclusions which
might be drawn through use of statistical techniques,
and in this study, we extend the ‘graphical’ method
proposed by Jin et al. (1997) to incorporate exper-
imental errors in a more general way. In particular,
we generate various likelihood/confidence contours
which give direct information on the likelihoods that a
particular S2, τe solution is consistent with the exper-
imental T1, T2 and NOE results, and their associated
uncertainties. The results of a Bayesian statistics ap-
proach are then compared with graphical and Monte
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Carlo methods. The Bayesian approach appears partic-
ularly useful since it readily gives interesting relative
probabilities, unlike the simple graphical method and
the Monte Carlo method. The Bayesian method thus
appears to be a useful extension of previous meth-
ods, and indeed it is quite possible that such methods
may actually facilitate choices between different mo-
tional models (Hall, K., private communication), such
as differentiating between stochastic diffusion and
random-jump models for methyl rotation (Allerhand
and Oldfield, 1973).

Results and discussion

In modeling relaxation data there are many possi-
ble alternatives for the spectral density function. One
of the simplest is the well-known isotropic reorien-
tation density function given in Lipari and Szabo
(1982a,b), which is a function of the two internal
parameters (S2, τe) and one global rotational corre-
lation time (τc). A more complex model, originally
described by Woessner (1962), is the axially sym-
metric anisotropic diffusion function, which has four
terms describing the overall rotation of the molecule.
More complicated models include fully anisotropic
diffusion, which includes 6 terms for the global mo-
tion, and the Brüschweiler et al. (1995) model which
incorporates several diffusion tensors in a single pro-
tein (each having six terms). In what follows we will
describe our approach using just the isotropic diffusion
model, since this can be readily extended to the other
models as well.

In most work to date, aχ2-minimization has been
used to deduce S2, τe (Jin et al., 1997). In this
approach, theχ2-distribution function is given by
(Palmer et al., 1991):

χ2(S2, τc, τe) =
∑
1...N

(R1,obs− R1,calc)
2

σ2
1

+ (R2,obs−R2,calc)
2

σ2
2

+ (NOEobs−NOEcalc)
2

σ2
NOE

(1)

where R1 = 1
T1

, R2 = 1
T2

andσ = standard deviation.
Using T1, T2, and NOE measurements and the re-

laxation equations given in Lipari and Szabo (1982a,b)
(and determiningτc separately) enables expressions

for χ2 (S2, τe) to be easily evaluated. Typically, this is
accomplished by using a minimization approach such
as the Levenburg-Marquardt algorithm (Press et al.,
1986), although as pointed out by Jin et al. (1997) this
does not permit a simple analysis of the precision in
these parameters.

We therefore consider using Bayesian statistical
inference to deduce the range of probable S2, τe, τc
solutions, given a limited number of experimental ob-
servations. For a given R1 value determined in an
experiment and having a known uncertainty,σT , the
Bayes ‘likelihood’ function for the true R1,actual is
given by:

`(R1,actual given R1,exp) =

exp

[
− (R1,exp−R1,actual)

2

2σ2
T

]
(2)

where R1,exp is the experimentally determined R1 and
σT is the uncertainty. In the case ofn experimental
measurements of this quantity, the likelihood function
(or 1Z-surface; Box and Tiao, 1992; Le et al., 1995;
Heller et al., 1997) is then:

`(R1,actual given R1,exp) = 1Z

= exp

[
−n(R1,actual−R1,exp)

2

2σ2
T

]
(3)

whereR1,exp is the average of R1,exp over then ex-
perimental determinations. In the case of only one
experimental measurement of R1, one measurement of
R2, and one NOE measurement, the likelihood would
be:

3Z(S2, τc, τe) = exp

(
−(R1,calc− R1,obs)

2

2σ2
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)

·exp

(
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2σ2
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(4)
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which is also equal to:

3Z(S2, τc, τe) = exp

(−χ2

2

)
(5)

as can be seen from Equations 1 and 4. The Bayesian
3Z surface can be calculated as a function of S2 and
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τe for a givenτc, which yields a maximum value cor-
responding to the most likely solution for S2, τc and
τe. The normalized Z surface (likelihood function) can
then be integrated over regions ofτ, S space to ob-
tain the probability that the correct solution is within a
given region.

Now, of the three parameters which need to be de-
termined, onlyτc remains (generally) constant from
site to site, and as such can be handled separately. The
simplest way to do this is to use the ratio of T1/T2
(which is essentially only a function ofτc (Kay et al.,
1989)), then to minimize the difference between this
and the experimental values for all sites. Determinate
‘errors’ – from residues which have appreciable flexi-
bility, can be eliminated by discarding data for which
the following inequalities apply:

T1

T2
−
〈
T1

T2

〉
> 1.5σ T1

T2

(6)

NOE< 0.5 (7)

In Figure 1 we show an example of a Bayesian
(Figure 1A) plot for the human type-α (epidermal)
transforming growth factor from relaxation measure-
ments performed by Li and Montelione (1995) which
can be compared with the results of a Monte Carlo
simulation (Figure 1B). The 21 sites obeying the above
inequalities were used to construct these plots, with-
out taking into account Rex contributions, and Fig-
ure 1A shows

∏
1−21

1Z as a function ofτc for these
21 residues, normalized such that

∫∞
0

21Z(τc)dτc = 1.
There is clearly a maximum in the21Z function around
τc = 4.4 ns. Also shown are the 25%, 50%, 75% and
95% confidence intervals. The results of the Monte
Carlo approach shown in Figure 1B are virtually iden-
tical to the Bayesian results, Figure 1A, both in terms
of τc and overall range inτc values.

We have also investigated the possible uses of con-
ventionalχ2 methods in deducing confidence inter-
vals. However, aχ2 probability distribution function
has 25%, 50%, 75% and 95% confidence intervals
which are clearly much broader (data not shown) than
those produced by the Bayesian/Monte Carlo meth-
ods, due to the non-linear dependence ofτc on T1/T2,
and in such cases the goodness-of-fit method is inap-
propriate (Press et al., 1986). Also, using the F-test
to compare theχ2 minimum with χ2 at other points
is not permissible since theχ2 values being compared
are not statistically independent. Thus,χ2 methods are
less suitable for generating confidence widths then are
the Bayesian and Monte Carlo methods.

Figure 1. (A) 21Z probability plot of T1/T2 vs. τc for 21 residues
in the hTGFα protein using data from Jin et al., (1997) and Li and
Montelione (1995), normalized such that

∫∞
0

21Z(τc)dτc = 1. The
maximum occurs at 4.4 ns. The 25%, 50%, 75%, 95% confidence
intervals are shown (—). (B) Histogram of a Monte Carlo simulation
of the same data. The Monte Carlo result is essentially identical to
the Bayesian result (A).

Next, we consider S2 andτe. We show in Figure 2
a comparison of the simple graphical method used pre-
viously (Jin et al., 1997) with the Bayesian approach.
Figure 2A shows the overlapping regions generated
from R1, R2, and NOE measurements for Ala31 in
human type-α (epidermal) transforming growth fac-
tor (Li and Montelione, 1995; Jin et al., 1997). For
the Bayesian analysis, the3Z likelihood surfaces can
immediately be plotted as a function of S2, τe, as
shown in Figure 2B. Here, we show a contour plot
using the same raw data as employed in Figure 2A.
The maximum (the most probable solution) occurs at
τe = 0.054 ns, S2 = 0.825 with the unnormalized
likelihood (3Z value) equal to 0.9, and the 25%, 50%,
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Figure 2. Comparison between different graphical approaches to determining S2, τe. (A) Graphical approach to S2, τe of Jin et al. (1997)
shown for Ala31 in the hTGFα protein. (B) Contour plot of Bayesian likelihood for S2 and τe for Ala31 in hTGFα, given the following:
τc = 3.76 ns (the value chosen in Jin et al. (1997) and Li and Montelione (1995), R1 = 2.5 s−1, R2 = 5.36 s−1, NOE= 0.62, σR1 = 0.22,
σR2= 0.29,σNOE= 0.01, 15N CSA= 160 ppm, N-H bond length= 1.02 Å. The contours correspond to 25%, 50%, 75%, and 95% levels of
confidence, respectively. (C) Comparison between Bayesian and simple graphical approach. R1, R2, NOE min/max lines are dashed, Bayesian
contours are solid and as in B.

75% and 95% – confidence level contours are labeled.
Including up to a 75% confidence level, Figure 2B,
the parameter range covers S2 = 0.72 to 0.85, and
τe = 0.03 to 0.13 ns. We also show for comparative
purposes in Figure 2C the earlier graphical results of
Jin et al. superimposed upon the Bayesian levels. The
Bayesian approach is clearly more readily interpreted
in terms of the most likely S2, τe values. But how do
these results compare with those obtained by using a
Monte Carlo approach?

Figure 3 shows the results of a Monte Carlo simu-
lation. In Figure 3A we show a plot in which 10 000
simulated points lie on an S2, τe surface, while in Fig-
ure 3B the Bayesian contours are shown, for compari-
son. Of these points, 9 486 lie within the region shown
in Figure 3B. There is near perfect agreement between
the Monte Carlo and Bayesian results, as can be seen
in Figure 3B, although there are some advantages to
the Bayesian approach in terms of visualization.

In summary then, the results we have shown above
help simplify the problem of extracting motional in-
formation from NMR spectra. We have presented the

results of a Bayesian inferential treatment of likeli-
hood to estimate S2 and τe given τc. Moreover, the
explicit incorporation of experimental error estimates
in terms of Gaussian distributions enables more mean-
ingful graphical representations of the results than use
of simple cut-off or restriction plots (Jin et al., 1997).
In the future, such graphical methods should also be
of use in clarifying motional models (Allerhand and
Oldfield, 1973; Hall, K., private communication),
bond lengths, and chemical shielding anisotropies.
In addition, other parameters, such as the2H elec-
tric field gradient (LiWang and Bax, 1997) as well
as dipole-dipole/chemical shielding anisotropy cross-
correlation results (Tjandra et al., 1996; Tjandra and
Bax, 1997a,b; Tessari et al., 1997) can also be incorpo-
rated into motional models using a multiple Z-surface
approach, such as we have recently used in another
context to incorporate up to six spectroscopic ob-
servables in a formally similar Bayesian analysis, in
heme proteins (McMahon et al., 1998). Overall, the
Bayesian approach is simple and rapid and is ide-
ally suited for representing dynamical information in a
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Figure 3. (A) Plot of a 10 000 point Monte Carlo simulation versus
S2 andτe for Ala31 in the hTGFα protein, using the same data as in
Figure 2. Monte Carlo data points are represented by ‘·’. (B) Com-
parison of Monte Carlo results with the Bayesian approach, contours
are solid, simulation points are dots. Of the 10 000 simulated points,
9 486 lie within the 95% contour region.

convenient graphical manner. In particular, our Monte
Carlo results forτc, and for S2, τe, are essentially
indistinguishable from the Bayesian results, although
the Bayesian method is more readily interpretable, and
represents a considerable improvement over previous
graphical methods.
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