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Summary

Human gd T cells containing the Vg2Vd2 (Vg9Vd2)

T cell receptor are stimulated by a broad variety of
small, phosphorus-containing antigenic molecules

called phosphoantigens. The structures of several
species present in both Mycobacteria (TUBags1–4)

and in Escherichia coli have been reported to contain
a formyl-alkyl diphosphate core. Here we report the

synthesis of the lead member of the series, 3-formyl-
1-butyl diphosphate. This compound has low activity

for gd T cell stimulation, unlike its highly active isomer
(E)-4-hydroxy-3-methyl-but-2-enyl diphosphate, ne-

cessitating a revision of the structure of TUBag1. Like-
wise, the structure of the species identified as the

pentyl analog (TUBag 2) is revised to 6-phosphogluc-
onate. These results indicate that neither TUBag1 nor

the m/e 275 species proposed for TUBag2 are 3-formyl-
1-alkyl diphosphates, leading to the conclusion that

none of the natural phosphoantigens (TUBags1–4)
possess the structures reported previously.

Introduction

Human gd T cells expressing the Vg2Vd2 T cell receptor
(TCR) (also known as the Vg9Vd2 TCR) are activated by
a wide range of nonpeptide antigens, including small

*Correspondence: eo@chad.scs.uiuc.edu
7 Lab address: http://feh.scs.uiuc.edu/
organic diphosphates (phosphoantigens) [1, 2], alkyl-
amines [3], and bisphosphonates [4, 5] that are used to
treat various bone resorption diseases. Such Vg2Vd2
T cells rapidly proliferate on exposure to these antigens
during infections or with immunizations, often expand-
ing from w2%–3% to w50% of blood T cells [6, 7]
(reviewed in [8]) with parallel, rapid elevations in TNF-
a and IFN-g secretion [9]. Extracts of phosphoantigens
from many pathogenic organisms, such as Mycobacte-
rium tuberculosis, Escherichia coli, Pseudomonas aeru-
ginosa, and Plasmodium falciparum (one causative
agent of malaria), stimulate human Vg2Vd2 T cells
[8, 10, 11], as do some tumor cell lines [12]. Vg2Vd2
T cells also have broad antitumor properties and can
lyse tumor cells from a variety of tissue lineages [13].
For this reason, the use of such small-molecule phos-
phoantigens to activate Vg2Vd2 T cells for cancer immu-
notherapy is currently being intensively studied and has
shown clinical efficacy in one study [14].

There are, however, many questions as to the mecha-
nism of action of phosphoantigens, as well as to their
chemical structures. For example, phosphoantigens
have been proposed to interact directly with the gd

T cell receptor, based on the structural requirements
for phosphoantigen bioactivity [15] and on TCR muta-
genesis studies [16, 17], but no binding between a potent
synthetic phosphoantigen and the Vg2Vd2 TCR was ob-
served in a crystallographic investigation [18]. Further-
more, although it is likely that phosphoantigens require
a presenting molecule, none has been found. In contrast
to the numerous pyrophosphate phosphoantigens
which have been studied [19], bisphosphonates [12,
20] such as risedronate, and alkylamines [21], appear
to stimulate Vg2Vd2 T cells through an indirect process,
by inhibiting isoprenoid biosynthesis at the level of far-
nesyl diphosphate synthase, resulting in the upstream
accumulation of isopentenyl diphosphate, but again
the molecular basis for this activity has not yet been elu-
cidated in detail. More recently, Scotet et al. [22]
reported that Vg2Vd2 T cell receptors interact with
F1-ATPase and apolipoprotein A-1. This recognition is
proposed to be the basis for Vg2Vd2 T cell recognition
of various tumor cell lines, although we have found
examples where Vg2Vd2 TCR-mediated tumor recogni-
tion does not appear to involve F1-ATPase (unpublished
observation). Additionally, this study did not elucidate
structural details or any possible connection with gd
T cell activation by phosphoantigens or other small-
molecule antigens. Nevertheless, because this work
demonstrated the first actual TCR interaction, it is of
considerable interest.

In this context, it is of interest to note that gd T cell an-
tigens can affect lipid metabolism [23], and, in some
cases, inhibit ATP4ADP transporters (the isopentenyl
pyrophosphate [IPP] resulting from the action of bi-
sphosphonates reacts with ATP to form the toxic ATP
analog, ApppI [24]). Thus, there may be connections be-
tween ATPase/TCR signaling events and the small mol-
ecules that activate gd T cells. But because the actual
chemical nature of natural phosphoantigens has itself
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been the topic of considerable debate, and because
these species are exceptionally active (100 pM), it is es-
sential to clarify their chemical structures in order to aid
in the development of these molecules for use in cancer
immunotherapy.

Our previous work in Mycobacterium smegmatis
showed that one phosphoantigen, having a mass/
charge (m/e) ratio of 245, corresponded to isopentenyl
diphosphate (1; Figure 1) and suggested that a second
species having m/e = 275 might correspond to a hydrox-
ymethyl derivative of 1 [1]. Studies with M. tuberculosis
[2, 25], M. fortuitum [26], and E. coli [27] found evidence
for the existence of phosphoantigens termed TUBag1
and TUBag2, with m/e of 261 and 275, respectively.
Based on mass spectrometry, NMR, UV-vis, and chem-
ical modification results on these and other related anti-
gens (TUBag3 and TUBag4), TUBag1 was proposed to
be 3-formyl-1-butyl diphosphate (3-FBPP; m/e = 261;
2; Figure 1) [26], while TUBag2 was proposed to be
3-formyl-1-pentyl diphosphate (m/e = 275; 3; Figure 1)
[27]. Based on these results, molecular modeling ap-
proaches were then used [28, 29] to design phosphoan-
tigens, such as the epoxide of IPP, 4 (which has the

Figure 1. Structures of Phosphoantigens

1 = isopentenyl pyrophosphate (IPP), 2 = 3-formyl-1-butyl pyro-

phosphate (3-FBPP), 3 = 3-formyl-1-pentyl pyrophosphate, 4 = ep-

oxide of 1, 5 = bromohydrin pyrophosphate (Phosphostim), 6 = (E)-

4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP).
same empirical formula as 2; Figure 1), as well as the
bromohydrin of 1 (5). Both are potent activators of
Vg2Vd2 T cells, and the bromohydrin (5) is now under de-
velopment as a novel immunotherapeutic agent [30, 31].
However, the recent delineation of the 2-C-methyl-D-
erythritol 4-phosphate (MEP) pathway [32–34] found in
most Eubacteria (including Mycobacteria and E. coli)
has brought the assignment of the m/e = 261 species
as 3-formyl-1-butyl diphosphate [26] into question, as
this intermediate is not in the MEP pathway. Instead,
a compound from E. coli having m/e = 261 has been
shown to be (E)-4-hydroxy-3-methyl-but-2-enyl diphos-
phate (HMBPP) (6; Figure 1) [35], an extremely potent
Vg2Vd2 T cell antigen with an EC50 of w30–100 pM [36].

These results immediately raise the following ques-
tions. Is the 3-formyl-1-butyl diphosphate (3-FBPP, 2)
structure for TUBag1 correct? If not, is it likely that the
structure of TUBag2 is 3-formyl-1-pentyl diphosphate
(3)? Are there other likely possibilities for the m/e 275
ion structure? Does 3-FBPP (2) actually activate gd T
cells? Answering these questions is clearly of interest
in the context of the further development of phosphoan-
tigens as cancer vaccines. In this paper, we therefore re-
port the first total synthesis of 3-formyl-1-butyl diphos-
phate (2), its characterization by 1H and 31P NMR
spectroscopy, and its efficacy in Vg2Vd2 T cell activa-
tion. We also report on the chemical nature of the 275
ion species that has been proposed [27] as TUBag2,
the homolog 3 of TUBag1, and briefly assess the likeli-
hood that TUBag3 and TUBag4 contain formyl-alkyl
diphosphate cores.

Results and Discussion

Synthesis of 3-Formyl-1-Butyl Diphosphate (2)
Our synthetic route to 3-formyl-1-butyl diphosphate (2)
started from commercially available 2-methylbutyrolac-
tone (7), as shown in Figure 2. Ring opening of (7) with
HBr in ethanol gave the bromoester (8) in high yield
(94%), and then direct reduction of (8) with DIBAL at
280�C afforded 4-bromo-2-methyl-butanal (9) in 84%
yield. An attempt to obtain 3-formyl-1-butyl diphosphate
Figure 2. Synthesis of 2 and 12

(i) HBr/C2H5OH, 90%; (ii) DIBAL/ether,

84%; (iii) TMSOBn/FeCl3, 75%; (iv) (n-

Bu4N)3HP2O7/CH3CN, ion exchange (NH4
+),

70%; (v) ion exchange (Li+), 80%; (vi) 10%

Pd/C/H2O, 90%; (vii) 10% Pd/C, NH4Cl-

H2O, 70%; (viii) NaBH4 (in situ, in the NMR

tube). PP, pyrophosphate; Bn, benzyl.
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(2) via reaction of (9) with (Bu4N)3HP2O7 was unsuccess-
ful, probably due to the instability of the formyl moiety
under basic conditions. Protection of the bromo alde-
hyde (9) with benzyloxyltrimethylsilane (TMSOBn) to
form the dibenzyl acetal (10) was therefore carried out,
using FeCl3 as a catalyst [37]. The product (10) was
then reacted with (Bu4N)3HP2O7 at room temperature
overnight and the resulting mixture was subjected to
ion exchange purification to give the diphosphate (11)
as the triammonium salt. Hydrogenation of (11) using
10% Pd/C gave the reductive amination product 4-
amino-3-methyl-1-butyl diphosphate (12), so 11 was
ion exchanged to form the trilithium salt (13), after which
3-formyl-1-butyl diphosphate (2), along with the hydrate
(14), was obtained, in 70% yield.

NMR Characterization of Synthetic Species

The 1H and 31P NMR spectra of all intermediates were
unremarkable. However, both the 1H and the 31P NMR
spectra of 3-formyl-1-butyl diphosphate (2) were more
complex than anticipated and indicated the presence
of a mixture of (chiral) species (Figures 3A and 3B; see
Figure S1 in Supplemental Data available with this article
online). In particular, while the 600 MHz 1H NMR spec-
trum of 2 did contain a highly deshielded (d = 9.5 ppm)
feature corresponding to the aldehydic proton, this fea-
ture had only w50% of the expected intensity. More-
over, as can be seen in Figure 3A, the spectrum is clearly
not that expected for 2 alone. Likewise, the 31P spec-
trum of 2 (Figure S1B) consisted of two sets of reso-
nances, with the more shielded feature (at w29 ppm)
being split into two sets of doublets. These features
arise from an equilibrium between the aldehyde (2) and
its hydrate, the 4,4-diol (14). Similar hydration behavior
has been reported previously by Lawrence and Suther-
land [38] for glycolaldehyde diphosphate and glycolal-
dehyde triphosphate. Upon integration (Figure S1),
both the 1H and 31P NMR spectra correspond to
a w1:1 ratio of the free aldehyde (2) and the hydrate di-
phosphate (14). These conclusions are supported by in-
spection of the 600 MHz 1D spectrum (Figure 3A) and
the 2D COSY spectrum (Figure 3B). In Figure 3A, the al-
dehyde peak (in 2) as well as the methine peak in the hy-
drate (14) are readily observed, with the hydrate methine
peak showing a clear 3J coupling (3J = 4.5 Hz) to H3 (14),
confirming the equilibrium between the aldehyde (2) and
its hydrate (14). The 2D COSY spectrum (Figure 3B) also
permits a correlation between all protons in the alde-
hyde subspectrum (illustrated in Figure 3A) and a similar
correlation and set of assignments for the hydrate (14)
(Figure 3B). These results are further supported by the
observation that the reductive amination product (12)
had 1H and 31P NMR spectra consistent with a single
species (Figure 2; Figure S1). Moreover, reduction of
the 2 (14) mixture (in the Li+ form) with NaBH4 (in situ,
in the NMR tube) gave 4-hydroxy-3-methyl-1-butyl di-
phosphate (15) (Figures S1E and S1F). The mass spec-
trum of the 2 (14) mixture yielded, however, only the
m/e = 261 ion in its mass spectrum, indicating dehydra-
tion in vacuo. The 1H NMR chemical shifts of 2, 6, and 14

were all consistent with those expected theoretically,
but the results observed for 2 differed from those re-
ported for TUBag1, the compound previously assigned
this structure [26].
Identification of the 275 m/e Ion in M. fortuitum

and M. smegmatis as 6-Phosphogluconate
We next questioned whether the proposed structure of
the m/e = 275 species as the homolog, 3-formyl-1-pentyl
diphosphate (3), was correct. We investigated the mass
spectrum of the m/e = 275 species previously partially
purified from supernatants of M. smegmatis and M. for-
tuitum [1]. Using accurate mass matching (FT-ICR MS,
negative ion mode), the exact mass of the m/e = 275
species from M. smegmatis was 275.017210 amu. Using
a 30 ppm mass tolerance and a charge = 21, we ob-
tained the possible elemental composition results
shown in Table 1, which strongly support a C6H12O10P
structural formula (with a 0.15 mmu or 0.55 ppm error).
In contrast, the ion corresponding to 3-formyl-1-pentyl
diphosphate (3) has a 29.4 ppm mass error, the largest
among the 12 structures returned (Table 1). The likely
chemical structure corresponding to the C6H13O10P
compound is 6-phosphogluconate (16), which is used
in the synthesis of ribulose 5-phosphate (17) and 2-
dehydro-3-deoxy-6-phosphogluconate (18) (Figure S2)

Figure 3. 600 MHz 1H NMR Spectra of 2 (14)

(A) 1D spectrum showing peaks of interest, connectivities, and as-

signments from (B).

(B) COSY spectrum showing connectivities among aldehyde (2) and

hydrate (14) peaks, also illustrated in (A).
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Table 1. Experimental and Calculated Masses and Structural Formulae for the m/e = 275 Ion

Mass (Expected) (amu) Mass (Calculated) (amu) Error (mmu) Error (ppm) Formula

275.017210 275.013854 3.36 12.20 12C20
1H3

16O2

275.017210 275.019729 22.52 29.16 12C13
1H7

16O7

275.017210 275.010349 6.86 24.95 12C2
1H11

16O15

275.017210 275.011486 5.72 20.81 12C13
1H8

16O5
31P

275.017210 275.017361 20.15 20.55 12C6
1H12

16O10
31P

275.017210 275.018498 21.29 4.68 12C17
1H9

31P2

275.017210 275.024373 27.16 226.05 12C10
1H13

16O5
31P2

275.017210 275.009118 8.09 29.42 12C6
1H13

16O8
31P2

275.017210 275.016130 1.08 3.93 12C10
1H14

16O3
31P3

275.017210 275.022005 24.80 217.44 12C3
1H18

16O8
31P3

275.017210 275.013762 3.45 12.54 12C3
1H19

16O6
31P4

275.017210 275.020774 23.56 212.96 12C7
1H20

16O31P5
[39–41]. The high-resolution mass spectra also enable
the assignment of several other ions seen in superna-
tants of M. smegmatis (Figure 1c in [1]) including m/e =
339 as C6H13O12P2, corresponding to a hexose-diphos-
phate, and m/e = 277 as C5H12O9P2, corresponding to
2-C-methyl-D-erythritol-2,4-cyclodiphosphate.

To confirm the identity of the 275 ion species as 6-
phosphogluconate, daughter ion spectra were obtained
from the natural 275 species and synthetic 6-phospho-
gluconate. The parent/daughter spectrum of the 275
species from M. smegmatis was identical to that of 6-
phosphogluconate, 16 (Figure S3), and very similar to
the reported parent/daughter spectrum for the m/e =
275 species that was proposed as 3-formyl-1-pentyl
diphosphate (3). Sustained off-resonance collision-
induced dissociation gave no evidence for diphosphate
(m/e = 159) in the spectrum of the M. smegmatis extract.
6-phosphogluconate appears to decompose by loss of
H2O (m/e = 257) and HPO3, forming a carbanion having
m/e = 177. Taken together, these results demonstrate
that the m/e = 275 ion species observed in mass spectra
of extracts of Mycobacteria spp. and E. coli corre-
sponds to 6-phosphogluconate (16).
Activity of 2 (14), 12, and 16 in Vg2Vd2 T Cell
Stimulation

We next assessed the biological activity of the various
compounds by their ability to stimulate TNF-a produc-
tion and proliferation by several Vg2Vd2 T cell clones
and to expand Vg2Vd2 T cells in peripheral blood mono-
nuclear cells (PBMC) from normal donors. The JN.24
and 12G12 Vg2Vd2 T cell clones were stimulated with 2

(14) and 12, with 1, 5, and 6 as positive controls. One rep-
resentative data set for JN.24 is shown in Figure 4A and
a summary of the EC50 results is presented in Table 2. In
both the TNF-a release and cell proliferation assays we
find the expected activity pattern for the positive con-
trols, with 6 (HMBPP) having extremely high activity, fol-
lowed by 5 (Phosphostim), and then 1 (IPP). Both the al-
dehyde (hydrate) 2 (14) and the amine (12) have low to
medium activity. Compared to HMBPP (6), the aldehyde
2 (14) is w20,000-fold less active in the JN.24 cell line
and w100,000-fold less active in the 12G12 cell line (Ta-
ble 2). The results for all four experiments (two assays,
two cell lines, five compounds) can be readily compared
simply by plotting the TNF-a release EC50s against the
cell proliferation EC50s, as there is a shift in EC50 for
Figure 4. Vg2Vd2 T Cell Stimulation by

3-Formyl-1-Butyl Diphosphate (2) but Not

6-Phosphogluconate (16)

(A) TNF-a release by JN.24 T cells in re-

sponse to antigen stimulation with 1 (aster-

isk), 2 (closed circles), 5 (open triangles), 6

(closed squares), and 12 (open squares)

(with fitted curves).

(B) Correlation between Vg2Vd2 TNF-a re-

lease and Vg2Vd2 T cell proliferation EC50s.

JN.24 cell EC50s are denoted by open circles

and 12G12 cell EC50s by closed squares. For

the overall correlation, R2 = 0.94 and p <

0.0001.

(C) 6-phosphogluconate (16) does not stimu-

late Vg2Vd2 T cells. 12G12, HD.108, and HF.2

Vg2Vd2 T cell clones were stimulated with

various antigens for 2 days in the presence

of Va-2 or CP.EBV antigen presenting cells.

EPP, ethyl pyrophosphate.
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Table 2. EC50 Results for gd T Cell Stimulation Assays

Assay Cells

EC50 (mM)

1 2 (14) 5 6 12

TNF-a release JN.24 + CP.EBV 29 85 0.43 0.004 25

TNF-a release 12G12 + Va-2 3.2 27 0.02 0.0002 8.6

Proliferation JN.24 + CP.EBV 190 490 0.52 0.027 30

Proliferation 12G12 + Va-2 3.8 7.0 0.008 0.00008 7.1
both TNF-a release and cell proliferation between the
two cell lines (open circles are EC50s for JN.24 cells;
black squares are EC50s for 12G12 cells; Figure 4B).
The single correlation line shown has an R2 = 0.94 with
p < 0.0001. The low activity of 2 and 14 was not due to
competing inhibitory and stimulatory activities, as there
was no inhibition upon mixing 2 (14) with 6 (HMBPP)
(Figure S4). Testing of 6-phosphogluconate (16) showed
that this compound has essentially no activity for
Vg2Vd2 T cells for stimulating proliferation (Figure 4C)
or TNF-a release (data not shown). There was minimal
activity at 10 mM for the HD.108 (Figure 4C, middle
panel) and DG.SF68 (data not shown) clones. The ability
of these compounds to induce the expansion of Vg2Vd2
T cells from the PBMC of two normal donors was similar
to the results noted for the T cell clones, with HMBPP (6)
inducing large expansions (65% and 70%), 2 (14) induc-
ing moderate expansions (15% and 51%), and 6-phos-
phogluconate inducing no expansions (4% and 4%)
(Figure S5).

Identification of Natural Phosphoantigens
for Vg2Vd2 T Cells

The chemical structure of the m/e = 261 ion observed in
phosphoantigen extracts of Mycobacterium spp. and
E. coli has been the topic of debate for many years
[1, 26, 27, 35]. In early work, it was proposed that this
species was a hydroxy analog of IPP, as IPP itself was
known to be a phosphoantigen with m/e = 245 and the
novel species had a mass 16 amu larger, corresponding
to addition of one oxygen atom [1]. Later, it was pro-
posed that the m/e = 261 species corresponded to the
species 3-formyl-1-butyl diphosphate (2) [26], and, even
later, it was proposed to be another isomer, (E)-4-hy-
droxy-3-methyl-but-2-enyl diphosphate (6; HMBPP)
[35]. The latter compound has now been prepared by to-
tal synthesis and has been found to be a w30–100 pM
activator of Vg2Vd2 T cells. HMBPP is required for
Vg2Vd2 T cell activation because mutant E. coli lacking
this compound have little bioactivity for Vg2Vd2 T cells
[42]. Moreover, E. coli overproducing HMBPP due to a
LytB mutation induce Vg2Vd2 T cells to expand in the
human peripheral blood mononuclear cells-SCID-beige
mouse model (our unpublished observations). Taken
together, these data suggest that the assignment of the
m/e = 261 species as HMBPP is correct. However, it also
seemed possible that HMBPP (6) might convert to 3-for-
myl-1-butyl diphosphate (2) under some conditions, for
example, via an isopentenyl diphosphate/dimethylallyl
diphosphate isomerase (IPPI, idi gene)-catalyzed hydro-
gen shift to form the enol (Figure 5), which could then
isomerize to the aldehyde (2). Therefore, we had two
questions of interest. Does 2 activate Vg2Vd2 T cells?
And does this putative isomerization actually occur?
In this report, we detail the synthesis and testing of 3-
formyl-1-butyl diphosphate (2) and find that the alde-
hyde (2) is in equilibrium with its hydrate form (14) in
aqueous solution. Based on the Vg2Vd2 T cell activation
EC50 results for TNF-a release and cell proliferation in
Vg2Vd2 T cell clones (Table 2), neither the free aldehyde
(2) nor its hydrate form (14) has strong activity for
Vg2Vd2 T cell stimulation. Thus, even if present, neither
2 nor 14 is likely to contribute significantly to Vg2Vd2 T
cell activation by pathogenic bacteria or protozoa using
the MEP pathway. Moreover, when HMBPP was incu-
bated with IPPI (wild-type, from E. coli), the 600 MHz
1H NMR spectrum of HMBPP (6) showed no evidence
of an aldehyde peak, and the 1H NMR spectrum of the
aldehyde (hydrate), 2 (14), showed no evidence of an
olefinic double bond (data not shown). Thus, there is
no evidence for the conversion of HMBPP (6) to 3-for-
myl-1-butyl diphosphate (2), which strongly suggests
that no active 6 could be produced from 2 (14) by this
mechanism.

As noted in the Introduction, a second aldehyde struc-
ture, 3-formyl-1-pentyl diphosphate (3), has been pro-
posed for the m/e = 275 ion species found in bioactive
preparations from M. smegmatis, M. fortuitum, and
E. coli. Given the modest activity of 3-formyl-1-butyl di-
phosphate, we questioned whether this proposed struc-
ture was correct. Exact mass measurement and the sim-
ilarity of fragmentation patterns seen between spectra
of m/e = 275 species from M. smegmatis and synthetic
6-phosphogluconate (16) indicate that the m/e = 275
species corresponds to 6-phosphogluconate (16) rather
than 3-formyl-1-pentyl diphosphate. Moreover, 6-phos-
phogluconate (16) did not stimulate Vg2Vd2 T cells
(Figure S5). The monophosphorylated species 6-phos-
phogluconate likely copurifies with pyrophosphate
compounds on anion exchange chromatography be-
cause of the third negative charge from the carboxylic
acid moiety. These findings suggest that the bioactive
compound corresponding to TUBag2 is not the m/e =
275 ion species, but is actually a lower abundance com-
pound with high bioactivity. Further purification and
characterization of natural phosphoantigens will be re-
quired to identify the actual species responsible for
bioactivity.

Significance

Activation of human gd T cells by small, phosphorus-

containing antigenic molecules, phosphoantigens, is
of great importance as part of the first line of defense

against a broad variety of pathogens. The structures
of four major phosphoantigens from Mycobacteria

and E. coli, TUBag1, TUBag2, TUBag3, and TUBag4,
have long been considered as 3-formyl-1-alkyl
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Figure 5. Possible Route for Interconversion

of 2 and 6, Catalyzed by Isopentenyl Pyro-

phosphate Isomerase (idi) via the Enol of 2
diphosphates, based on which novel nonpeptide anti-
gens have been developed. Here, however, we show

by a combination of chemical synthesis, NMR spec-
troscopy, and mass spectrometry that such formyl

species are unlikely to be responsible for human gd

T cell stimulation by pathogens. Our study describes

the first total synthesis of 3-formyl-1-butyl diphos-
phate and demonstrates that this molecule is only

a low-potency activator of Vg2Vd2 T cells. This finding
supports an assignment of TUBag1 as (E)-4-hydroxy-

3-methyl-but-2-enyl diphosphate (HMBPP). Addition-
ally, mass spectrometry strongly supports the assign-

ment of the m/e = 275 species as 6-phosphogluconate.
Based on these results, we conclude that none of the

major phosphoantigens (TUBags1–4) responsible for
Vg2Vd2 T cell activation contains a central 3-formyl-

1-alkyl diphosphate core structure.

Experimental Procedures

Reagents

All chemicals for synthesis were reagent grade or better. Anhydrous

solvents were dried prior to use. IPP (1) was from Sigma, 5 was pre-

pared as described elsewhere [29], and 6 was the kind gift of José-

Luis Giner. 6-phosphogluconate (16) was from Sigma.

NMR Spectroscopy
1H and 31P NMR spectra were obtained at 400 or 600 MHz (1H reso-

nance frequencies) using Varian Inova spectrometers. 1H chemical

shifts were referenced to an external standard of TMS (10% v/v tet-

ramethylsilane, in CDCl3) using the convention that high-frequency,

low-field, paramagnetic, or deshielded values are positive (IUPAC

d scale). 31P NMR spectra were referenced to an external standard

of 85% (v/v) H3PO4, using the same convention.

Mass Spectrometry

Fourier-transform ion cyclotron resonance mass spectrometry (FT-

ICR MS) was performed using electrospray ionization in the negative

mode on the 7-Tesla machine at the Environmental Molecular Sci-

ences Laboratory, Pacific Northwest National Laboratory. Internal

standards of IPP (1) or geranyl diphosphate were used for exact

mass determinations. Electrospray ionization tandem mass spec-

trometry (ESI MS/MS) was performed in negative ion mode using

an API-III triple-quadrupole mass spectrometer (PE-SCIEX), as

described [1].

Synthesis Details

Ethyl 4-Bromo-2-Methylbutyrate (8)

2-methylbutyrolactone (7) (2 g, 20 mmol) was added to a freshly pre-

pared saturated solution of dry hydrogen bromide in absolute etha-

nol (20 ml). The solution was stirred at room temperature for 2 days,

then poured into ice water and extracted with ethyl acetate (100 ml).

The combined organic extracts were washed with a saturated

NaHCO3 solution (30 ml) and water (30 ml), dried (Na2SO4), and con-

centrated under reduced pressure to give ethyl 4-bromo-2-methyl-

butyrate (8) (3.8 g, 94%). 1H NMR (CDCl3, 400 MHz): d 1.17 (d,

J = 6.8 Hz, 3H, CH3CHCOO); 1.25 (t, J = 7.2 Hz, 3H, OCH2CH3);

1.86–1.94 (m, 1H, BrCH2CH2); 2.20–2.29 (m, 1H, BrCH2CH2); 2.68 (m,

1H, CHCOOCH2CH3); 3.48 (t, 1H, J = 6.8 Hz, 2H, BrCH2); 4.16 (q,

J = 7.2 Hz, 2H, OCH2CH3).

4-Bromo-2-Methylbutanal (9)

To a solution of 8 (2.09 g, 10 mmol) in anhydrous dimethyl ether (30

ml) was carefully added DIBAL-H (10.5 ml, 1.0 M in hexane) so that

the temperature did not exceed 280�C. After addition, the mixture

was kept at 280�C for 1 hr and was then quenched with saturated
NH4Cl. The aqueous layer was extracted (ether, 30 ml) and the com-

bined organic layer dried (Na2SO4), evaporated to dryness, then

subjected to chromatography to afford 9 (1.39 g, 84%) as a colorless

oil. 1H NMR (CDCl3, 400 MHz): d 1.16 (d, J = 7.6 Hz, 3H, CH3); 1.80–

1.89 (m, 1H, BrCH2CH2); 2.27–2.35 (m, 1H, BrCH2CH2); 2.63–2.68

(m, 1H, CH3CHCHO); 3.40–3.52 (m, 2H, BrCH2CH2); 9.67 (s, 1H,

CHO).

4-Bromo-2-Methylbutanal Dibenzyl Acetal (10)

To a mixture of FeCl3 (80 mg, 0.5 mmol) and 9 (0.83 g, 5 mmol) in an-

hydrous CH2Cl2 (5 ml) was added benzyloxyltrimethylsilane (2.2 g,

12 mmol) at 0�C under argon. The resulting mixture was stirred for

2 hr, quenched with saturated NaHCO3, and extracted with ether.

The combined organic layer was dried (Na2SO4) and evaporated to

dryness to afford crude 10 (2.42 g, 75%) which was used in the

next step without further purification.

Triammonium 4,4-Dibenzyloxy-3-Methyl-1-Butyl

Diphosphate (11)

Published methods [43] were used with some modifications, includ-

ing the omission of the cellulose column chromatography step. Tris

(tetra n-butyl) ammonium hydrogen pyrophosphate (2.7 g, 2.8 mmol)

was added to a solution of crude 10 (0.5 mmol) in anhydrous MeCN

(3 ml). The suspension was stirred at room temperature for 6 hr. After

it was washed with pentane (3 3 10 ml) and concentrated, the resi-

due was dissolved in 2 ml of ion exchange buffer (25 mM NH4HCO3

containing 2% 2-propanol). The resulting solution was passed

through a column (2 cm 3 10 cm) of Dowex AG 50W-X8 (100–200

mesh) cation exchange resin (ammonium form). The column was

eluted with two column volumes of ion exchange buffer, and the el-

uent was lyophilized to dryness. The residual white solid was par-

tially dissolved in 20 ml of 25 mM aqueous NH4HCO3:MeCN:isopro-

panol (3:5:5). The gel-like mixture was vortexed, centrifuged, and the

supernatant solution was decanted into another round bottom flask.

The extraction was repeated five more times until a white solid

formed. The supernatant was concentrated to near dryness by ro-

tary evaporation. The solid was washed with 5 ml of ethanol:diethyl

ether (1:2) and then lyophilized to dryness (190 mg, 70%). 1H NMR

(D2O, 400 MHz): d 0.8 (d, J = 7.6 Hz, 3H, CH3); 1.70–1.80 (m, 1H,

PPOCH2CH2); 1.90–2.01 (m, 1H, PPOCH2CH2); 3.80–3.92 (m, 2H,

PPOCH2CH2); 4.40–3.70 (m, 5H, [PhCH2O]2CH); 7.2–7.4 (m, 10H,

ArH).

3-Formyl-1-Butyl Diphosphate (2)

11 (190 mg) was dissolved in H2O (2 ml) and then passed through

a column (2 cm 3 3 cm) of Dowex AG 50W-X8 (100–200 mesh) cation

exchange resin (lithium form). The column was eluted with water,

and then the eluent was lyophilized to dryness to afford 13 (140

mg, 80%). Ten percent Pd/C (30 mg) was added to a solution of 13

(140 mg) in H2O (3 ml) and the mixture was hydrogenated with an

H2 balloon at room temperature. After 5 hr, the mixture was filtered

through a short column padded with celite, then lyophilized to give

a syrup which was washed with ethanol:diethyl ether (1:1, 5 ml),

and lyophilized to afford 2 (61 mg, 70%) along with its hydrate (14)

(1H NMR spectrum shown in Figure 3).

Purification of the m/e 275 Species

Mycobacterium smegmatis and M. fortuitum were grown in Middle-

brooks 7H9 media and phosphorylated compounds were purified as

detailed in [1]. Mass spectrometry analysis was done on the samples

reported in Figures 1c and 2b from [1].

gd T Cell Assays

Vg2Vd2 T cell TNF-a release and proliferation assays were per-

formed as described previously [44]. Briefly, to measure bioactivity

for Vg2Vd2 T cells, the CD4+ JN.24, CD4+ HF.2, CD8aa+ 12G12, or

the CD4282 HD.108 Vg2Vd2 T cell clones were stimulated with

phosphoantigens in the presence of CP.EBV (an EBV transformed

B cell line) for CD4+ clones or Va-2 (a transformed fibroblast) for

CD8aa+ and CD4282 clones. CP.EBV and Va-2 were fixed with

0.05% glutaraldehyde (EM grade, Sigma) for use as antigen
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presenting cells. Note that although the relative potencies of the

phosphoantigens were similar, the NKG2D+ Vg2Vd2 clones, 12G12

and HD.108, exhibited higher antigen sensitivity, likely due to costi-

mulation through their NKG2D receptors by their interaction with the

NKG2D ligands MICA, ULBP2, and ULBP3 that are expressed by the

Va-2 cell line. We have previously shown that the NKG2D-MICA in-

teraction significantly increases antigen sensitivity [45]. Concentra-

tions required to achieve 50% of the observed T cell response

(EC50s) were obtained by using the Prism 4.0 program (Graphpad

Software), using a sigmoidal dose-response function. Curve-fitting

minima for each experiment (e.g., TNF-a release from JN.24 cells)

were determined using the global fitting technique, as implemented

in Prism 4.0. Curve-fitting maxima were optimized for each individ-

ual compound without the use of any constraints.

For expansion of Vg2Vd2 T cells by phosphoantigens, PBMC from

two normal donors were isolated by centrifugation on Ficoll-Hypa-

que gradients. PBMC (1 3 105) in 0.2 ml media were incubated in

96-well round bottom wells with the various phosphoantigens. IL-2

was added to 1 nM on day 3. The cells were harvested on days 7

and 14, stained with HIT3a FITC-anti-CD3 (eBioscience) and B6

PE-anti-Vd2 (BD Pharmingen) monoclonal antibodies, and analyzed

by flow cytometry.

Supplemental Data

Supplemental data include five figures and are available at http://

www.chembiol.com/cgi/content/full/13/9/985/DC1/.
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