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Introduction 

The purpose of this Review Letter is to summarise 
some recent advances in our understanding of the 
molecular dynamics of lipids in both natural and 
model membrane systems, which have been obtained 
using the techniques of differential scanning calori- 
metry, nuclear magnetic resonance, electron spin 
resonance, X-ray diffraction, infra-red and Raman 
spectroscopy. References to the basic principles of the 
techniques themselves are given at the end of this letter*. 

We treat lipid-lipid and lipid-cholesterol inter- 
actions in model systems initially, and follow this by 
a discussion of lipid mobility in biomembranes them- 
selves. 

There is now increasing evidence that some mem- 
branes contain heterogeneous (gel and liquid crystalline) 
lipid domains, and the evidence for and possible im- 
plications of this are discussed. 

1. Model Membranes 

1.1. Thermal Studies 
The lipids present in biological membranes, e.g. 

phospholipids and glycolipids, generally exhibit both 
thermotropic and lyotropic mesomorphism, and often 
form bilayer leaflet membrane structures in H20. 
Order ~ disorder (crystal ~ liquid crystal) phase 
transitions have been studied using both the techniques 
of differential thermal analysis and differential 

1" Present address: Chemistry Department, Indiana University, 
Bloomington, Ind. 47401, USA. 

* See appendix for abbreviations. 

scanning calorimetry. The temperatures at which the 
phase transitions occur are dependent upon the head- 
group, the hydrocarbon chain length, and the degree 
and type of unsaturation present [1 ]. For the same 
headgroup and extent of hydration, lipids with more 
unsaturated chains have lower transition temperatures 
than more saturated ones [2], longer chains higher 
transition temperatures than shorter ones [3], and 
cis-unsaturated chains lower transition temperatures 
than trans-unsaturated ones [4]. 

The mixing properties of various homologous 
lipids have been studied, though only in a preliminary 
manner [5]. Since biomembranes contain a varied 
population of chain lengths with different degrees of 
unsaturation and substitution together with (in 
general) a wide variety of polar headgroups, it is 
important to understand the phase behaviour of these 
mixed systems. 

With widely dissimilar chain lengths, phase 
behaviour characteristic of a monotectic system [5,6] 
is found, e.g. mixing of equimolar quantities of 
dioleyl lecithin with dibehenoyl lecithin results in 
transitions occurring at T c = - 2 2  °C and Tma x = 69 °C. 
With closer chain lengths, e.g. nC14 and nC~8, a mixed 
solid phase and solid plus liquid crystalline phase is 
present in the phase diagram. With nCa 6 and nC ~s or 
nC14 and nC16, ideal mixing in both phases occurs [5, 7] 

Mixing of different polar headgroup containing 
lipids, e.g. cerebroside (a sugar lipid, Tma x = 65 °C) 
with equimolar egg lecithin (Tmax~- -5  °C), results in a 
mixed gel-liquid crystal system with a lower 
(~ 35 °C)Tmax [8]. The mean 'fluidity' of  the 
system is thus higher than that of the pure cerebroside 
but lower than that of the egg lecithin, at the same 
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Fig. 1. Differential scanning calorimetry thermograms of 
dimyristoyl lecithin (DML)-dimyristoyl phosphatidyl ethanol- 
amine (DMPE) mixtures, a) DML 100 mole %; b) DML 90 
mole % + DMPE 10 mole %; c) DML 70 mole % + DMPE 
30 mole%; d) DML 50 mole %+ DMPE 50 mole %; e) DMPE 
100 mole %; all in excess water (Keough and Chapman [9] ). 

temperature. Similar behaviour is found in the system 
dimyristoyl lecithin-dimyristoyl phosphatidyl 
ethanolamine, fig. 1. Dimyristoyl lecithin has 
T c = 23 °C (fig. la) and for dimyristoyl phosphatidyl 
ethanolamine T c = 48 °C (fig. le). The pretransitional 
peak of  the lecithin, thought to be due to a rearrange- 
ment of  the polar headgroup, is removed on addition 
of small amounts of  the dimyristoyl phosphatidyl 
ethanolamine (fig. lb)  [9].  At higher concentrations 
(fig. 1 c, d), the endotherm is very broad. This indicates 
the presence of  clusters of  gel and liquid crystalline 
lipid in the bilayer, and the reduction in enthalpy of  
the transition is characteristic of  a lower cooperativity 
of  the transition in the mixture compared to the in- 
dividual components. Such broad transitions are 
typical of  several biomembranes (vide infra). 

The effect o f  water has also been shown to have a 
profound effect on the temperature and enthalpy of  
the gel ~ liquid crystal phase transition [3 ]. DSC 
curves of  distearoyl phosphatidylcholine indicate that 
10 moles of  water per mole of  lecithin are bound, i.e. 
are unfreezable, at 0 °C [10].  Addition of water to 

Fig. 2. Differential scanning calorimetry thermograms of 
distearoyl lecithin as a function of hydration: a) anhydrous; 
b) 10 wt % H20; c) 20wt % H20;d) 25 wt %H20;e) 30 wt 
% HzO; f) 40 wt % H20 (Williams and Chapman [ 1 ] ). 

the anhydrous material results in hydration of  the 
polar headgroups and this causes a lowering, fig. 2, of  
the transition temperature. It is also apparent that the 
shape of the phase transition endotherm alters. The 
transition changes to a highly cooperative phenomenon 
on hydration, consistent with laser-Raman evidence 
[11 ],  and the increased enthalpy of  the transition [3]. 

The effect of  cholesterol on the gel ~ liquid 
crystal transition of  several lipids has been studied. 
The addition of  cholesterol to dipalmitoyl lecithin in 
water (fig. 3) causes a lowering of  the transition 
temperature over and above 20 mole % cholesterol 
and a decrease in the heat of  transition [2]. At high 
(50 mole %) cholesterol concentrations the DSC 
endotherm is completely removed. A condition of  
'intermediate fluidity' is produced. Below Tc, in the 
presence of  cholesterol, the chains are more mobile 
than in the absence o f  cholesterol, and above Tc, they 
are less mobile. Above T c the steroid nucleus effecti- 
vely prevents flexing of the lipid hydrocarbon chains, 
and below Tc, it prevents them from crystallising into 
the rigid a-crystalline gel condition. Although the 
transition from gel ~ liquid crystal is not detectable 
by DSC, laser Raman evidence indicates that a transi- 
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tion still takes place, though over a very wide temper- 
ature range, and it is now a non-cooperative phenom- 
enon [11]. It has also been suggested recently that at 
low cholesterol concentrations, lecithin-cholesterol 
complex-formation can occur [12]. 

The removal of gel ~ liquid crystal transitions by 
cholesterol is not restricted to lecithin, and has been 
demonstrated for other phospholipids (e.g. sphingo- 
myelin [13] ) and glycolipids (e.g. cerebroside [13] ). 
The effect of cholesterol on the 'bound water' has 
also been discussed [2]. 

2 9 0  3 2 0  3 5 0  ° K 

Fig. 3. Differential scanning calorimetry thermograms of 
50 wt % dispersions in water of dipalmitoyl lecithin-cholester- 
ol mixtures containing: a) 0 mole %; b) 5 mole %; c) 12.5 
mole %; d) 20 mole %; e) 32 mole %; f) 50 mole % cholesterol 

(Ladbrooke et al. [2] ). 

1.2. Nuclear Magnetic Resonance 
1.2.1. Proton Wide-Line and Pulsed NMR 

Early wide-line studies indicated that NMR was a 
promising technique with which to study molecular 
mobility in membrane systems [ 14]. Anhydrous 
lecithins at liquid nitrogen temperatures were shown 
to have chain proton linewidths of ~ 1.6 mT* and this 
was gradually reduced on heating to 0.8 mT (distearoyl 
lecithin), [15] or in the presence of water, 0.4 mT 
[16], in the a-crystalline gel phase. It was apparent, 
however, that the headgroups had considerable 
mobility, especially near the thermal phase transition 
[16]. 

* 1T = 1 Tesla ~ 10 Kgauss. 

In the liquid crystalline phase, linewidths o f ~  10 #T 
were obtained from the chain protons and choline 
-CH2CH2-headgroup, and lines of 0.1 mT from the 
more rigid glycerol backbone. In the liquid crystalline 
phase, it was found that the -NM% headgroup in 
lecithins was highly mobile [16, 17]. 

As well as these frequency domain studies, time 
domain studies have been performed on the gel and 
liquid crystalline phases of lecithins and membrane 
lipids [ 17]. Spin-spin relaxation data have been 
interpreted in terms of a purely dipolar origin of the 
observed linewidths, which means that these linewidths 
are a good indication of the molecular mobility present 
in the system [17, 18], at least in fields up to ~ 2T. 

Spin-lattice relaxation in the laboratory frame (T~) 
[19] and rotating frame (T~p) [20] have also been 
applied to studies of lipid mobility, and moderately 
good correlations with continuous wave data have been 
obtained. This aspect of spin-dynamics is, however, 
complicated by the possibility of spin-diffusion, which 
may occur in these non-sonicated systems. Spin-diffusion 
is predicted not to occur in systems giving rise to well 
resolved high-resolutlon spectra, since it essentially 
depends on spectral overlap of resonance lines [21] and 
also on the condition T 2 ,¢ T 1 . That spin-diffusion does 
not in fact occur in sonicated liquid-crystalline lecithin 
has recently been experimentally confirmed by two 
groups [22-24] .  T 1 measurements are thus more 
easily interpreted in terms of molecular mobility in these 
systems. 

Some preliminary wide-line studies of lecithin- 
cholesterol interactions have also been reported 
recently [121. 

1.2.2. Proton High-Resolution NMR 
High-resolution NMR studies of  molecular mobility 

were initially hampered by the low signal-to-noise 
obtained on 1H at 60 MHz [25]. Increased use of 
higher fields (220 MHz) have effectively solved this 
problem, and it has been demonstrated that well 
resolved high-resolution proton NMR spectra from 
unsonicated smectic liquid crystalline lipids, can be 
obtained. Moderate resolution of an egg yolk lecithin 
spectrum has been obtained [18], though some lipids 
give considerably better resolved spectra. For example, 
sphingomyelin (Tma x = 40 °C) at 60 °C shows, fig. 4a, 
-NMe3, (CH2) n and CH 3 signals [13]. In the presence 
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broad envelope of resonances for the methylene 
carbons was still obtained. However, unsaturated 
CH=CH residues in the hydrocarbon chains were 
well resolved from the main envelope. It would thus 
appear that T1 measurements on these defined 
resonances should give more information about mole- 
cular mobility in these systems. The effect of 
cholesterol, using CMR, has not yet been reported. 

Fig. 4. 220 MHz 1H-NMR spectra of 20 wt % hand-dispersions 
in D20 of: a) Sphingomyelin, 60 °C; b) Sphingomyelin- 

cholesterol (1:1), 60 °C (Oldfield and Chapman [13] ). 

of equimolar quantities of cholesterol, the signals from 
the hydrocarbon chains are broadened, fig. 4b, which 
is consistent with the 'rigidising' role of  cholesterol 
above the transition temperature range. Below this 
range, however, the chains are 'fluidised'. (No signal 
from the hydrocarbon chains is seen below ca. 30 °C 
for sphingomyelin). The "intermediate fluid" 
sphingomyelin--cholesterol state is relatively tempera- 
ture insensitive over the temperature range 20 °C 
60 °C, as has been found previously for the dipalmitoyl 
lecithin-cholesterol system [12]. Similar results have 
been obtained for the system cerebroside-cholesterol 
(1:1) [131 . 

1.2.3. Carbon-13 NMR 
Because of the relatively broad and overlapping 

signals obtained using 1H-NMR, there is at present 
much interest in the use of 13C-NMR (carbon magnetic 
resonance, CMR). 13 C has a smaller gyromagnetic 
ratio than 1H, and is thus less susceptible to dipolar 
broadening. In addition, the chemical shift range is 
large (~  200 ppm typically), and spin diffusion in 
natural abundance does not occur so that the inter- 
pretation of T 1 measurements is simplified. 

The first reported [26] CMR of smectic liquid 
crystalline lecithin in H20 indicated the choline-NMe 3 
group was relatively mobile, though unfortunately a 

1.2.4. Deuteron Magnetic Resonance 
Nuclei with spin I ~> I have an associated electric 

quadrupole moment. Under some circumstances, this 
gives rise to a well defined splitting of the nuclear 
Zeeman levels. For deuterium, I = 1 and the observed 
splitting of the NMR absorption line is [27] 

3 e2qQ 
2~Uma x - - -  (3 cos20-1) 

4 h 

where e2qQ is the quadrupole coupling constant 
(170 KHz for CD 2 groups [28]) and 0 is the angle 
between the laboratory field and the electric field 
gradient tensor at the nucleus. 

Chain deuterated dimyristoyl lecithin 

CH2OCO(CD2 )12CD3 
I 

CHOC O(CD2 )12CD3 
I 

- -  + 

CH2OPO2OCH2CH2NM % 

(in its gel state) at 10 °C gives a broad spectrum, fig. 
5a, composed of overlapping CD 2 group doublets [29], 
implying that different groups are subject to different 
rates or types of motion, down the chain. Just above 
the transition at 23.5 °C, a maximal quadrupole 
splitting AVma x = 29.8 + 1 KHz is apparent, and at 
30 °C the splitting is 27 +- 1 KHz (fig. 5b, c). From 
the shape of the spectrum it is apparent that a relati- 
vely wide correlation time distribution is present along 
the alkyl chains. CD 2 groups near the polar/apolar 
interface are relatively restricted in their molecular 
motion, whilst those at the methyl terminal end have 
greater mobility. This is consistent with high resolution 
NMR evidence [18]. 

Addition of cholesterol to the dimyristoyl lecithin 
at 30 °C, in molar ratios, causes an increase in the 
maximal quadrupole splitting from 27 -+ 1 KHz to, 
fig. 5d, 49.4 + 1.5 KHz. This means that (3 cos20-1> 
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Fig. 5. 8 MHz Deuteron magnetic resonance spectra of 
di(perdeutero) myristoyl lecithin-H20 at: a) 10 °C; b) 
23.5 °C; c) 30 °C; d) 30 °C, lecithin-cholesterol (1:1) (Oldfield 

et al. [29]. 

is quite large, i.e. that the motion of a larger number 
of the acyl chain deuterons is highly restricted. A 
central narrower component is still present however 
[29, 12] implying that the groups near the Me-end 
of the chain are not appreciably affected in their 
motion by the presence of the bulky steroid nucleus. 
This interpretation agrees well with data using other 
techniques [30]. 

Cooling the lecithin-cholesterol system below T c 
for the lipid alone, to J0  °C, results in an increase in 
the maximal quadrupole splitting to 53.2 + 1.5 KHz - 
a slight decrease in mobility. This is consistent with 
the intermediate fluid hypothesis with a relatively 
temperature.insensitive lecithin-cholesterol "complex" 
present. 

1.3. Electron Spin Resonance Studies 
The technique of spin-labeling with nitroxide 

substituent bearing molecules introduced by McConnell 
and coworkers [31,32], has found widespread applica- 
tion in model.membrane structure studies. Three 
basic types of experiment have been performed - i) 
solubility studies; ii) studies on the correlation time 

distribution along spin-labelled molecules and iii) 
diffusion of spin-label studies. 

i) The nitroxide TEMPO (2,2,6,6-tetramethyl 
piperidine-1 -oxyl) 

O 
is water soluble. It has been used to study the gel ~ 
liquid crystal phase transition of dipalmitoyl lecithin 
in H20, since it has a high solubility in the fluid liquid 
crystal, and a low solubility in the gel [30]. The label 

N - N H ~ - - N O 2  

NO; 

$ 

O 

(the 2,4-dinitrophenylhydrazone derivative of 
2,2,6,6-tetramethylpiperid-4-one-l-oxyl) has also 
been used in this way to monitor the gel ~ liquid 
crystal phase transition of dipalmitoyl lecithin [33]. 
This partitioning effect of TEMPO has recently been 
suggested by McFarland [34] to be promising as a probe 
technique for assaying the amount of "fluid" regions 
in biomembranes, and it has been shown that at least 
65% of the lipids in sarcoplasmic reticuhim membranes 
are in a fluid state [34]. 

ii) Mobility in bilayers. Spin labelled fatty acid 
derivatives of the general type 

O ~ N  0 

CH3-(CH2 )SC/(/CH2)nCO2R 

(R --- H, Me or a lipid residue) 

have been used to study the rates and types of motion 
at different regions along the hydrocarbon chains in 
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bilayers in both  liposome dispersions [30, 35, 36] and 
in oriented systems [37].  

When spin labelled fat ty acids or lecithins are in- 
corporated into liquid crystalline egg lecithin bilayers, 
it is found that the decrease in order parameters S 
(defined as = 0 for an isotropic liquid and = 1 for a 
perfect crystalline solid) is greater than logarithmic 
with increasing n, the number of  methylene groups 
separating the label from the polar headgroup [30].  
This increased motion towards the centre of  the 
bilayer is difficult to reconcile with a model in which 
the hydrocarbon chains are in a parallel array, and it 
has been suggested, using a spin-labelled phospholipid 
label, that a net tilt o f  ~ 30 ° is present in the head- 
group region of  hydrated egg lecithin multilayers 
[36], producing a carbon atom density ~ 12% higher 
than the carbon a tom density near the terminal 
methyl groups - which is the order of  magnitude 
density change observed between liquid hexadecane 
(p = 0.77) and solid paraffin (p = 0.88). Calculations 
have suggested this tilted region has a lifetime of  
greater than 10 -8 sec [36]. The extent of  this tilted 
region is expected to be dependent on many structural 
features of  the lipid, and the temperature. 

In the presence of cholesterol (egg lecithin:cholester- 
ol, 2:1) it has been shown that the first 8 carbon 
atoms from the bilayer surface can be thought of  as a 
rigid rod [30], with the remaining carbons greatly 
increasing their motion towards the centre of  the 
bilayer. It  has also been demonstrated that  cholesterol 
can have a 'dual '  role in formation of  an intermediate- 
fluid state with several types of  lipid class [35]. 

Using the label methyl 4-(2'-(N-oxyl-4' ,4 '-dimethyl 
oxazolidine))-stearate (4NS), the unpaired electron 
in which residues predominantly at the polar/apolar 
in(efface, values of  twice the maximal hyperfine 
splitting (2Tin) of  6.1 mT in the gel state of  dipal- 
mitoyl lecithin at 20 °C, and 4.1 mT in the fluid 
liquid crystalline state of  egg lecithin, fig. 6a, b, have 
been reported [35]. Addition of  equimolar quantities 
of  cholesterol results in very similar spectral lineshapes, 
fig. 6c, d, with the dipalmitoyl lecithin-cholesterol  
system having 2T m = 5.65 mT and the egg yolk 
lecithin-cholesterol system 2T m = 5.27 mT. This is 
consistent with an intermediate fluid liquid crystalline 
state being formed from the rigid gel of  dipalmitoyl 
lecithin and the fluid liquid crystal o f  egg yolk 
lecithin. Noticeably, the egg yolk lecithin-cholesterol  

t~ 

Fig. 6. Electron spin resonance spectra (X-band) of the spin- 
label methyl 4-(2'-(N-oxyl-4',4'-dimethyl oxazolidine)) - 
stearate in 7 wt % aqueous hand-dispersions of: a) dipalmitoyl 
lecithin, 20 °C; b) egg yolk lecithin, 20 °C; c) dipalmitoyl 
lecithin-cholesterol (1:1), 20 °C; d) egg yolk lecithin- 

cholesterol (1:1), 20 °C (Otdfield and Chapman [35] ). 

system is more fluid than the dipalmitoyl leci thin-  
cholesterol system at the same temperature (5°27 mT 
egg yolk lecithin:cholesterol, 5.65 mT dipalmitoyl 
lecithin-cholesterol).  These interesting results are 
borne out when the label 12 NS is used. In dipalmitoyl 
lecithin at 20 °C, 2T m = 5.7 mT, and in egg yolk 
lecithin 2a N (twice the isotropic hyperfine splitting) 
= 2.8 mT. Addition of  cholesterol causes fluidisation 
of the dipalmitoyl lecithin (2T m = 4.85 roT), and 
immobilisation of the egg yolk lecithin (2T m = 4.15 
mT). The egg yolk lecithin:cholesterol system is more 
fluid than the dipalmitoyl lecithin:cholesterol system, 
at the same temperature. 

Near the polar groups the mobili ty or order of  
the chains in gel and intermediate fluid liquid crystal 
is similar (dipalmitoyl lecithin/H20/4NS,2T m = 6.1 mT, 
dipalmitoyl lecithin:cholesterol (1 : 1)/H 20/4NS 2T m = 
5.65 mT, AT = 0.45 mT) whereas aear the methyl 
group end of  the chains the mobility is quite dissimilar 
in gel and intermediate fluid liquid crystal, (dipalmitoyl 
lecithin/H20/12NS, 2T m = 5.7 mT, dipalmitoyl 
lecithin: cholesterol (1 : 1)/H20 / 12NS, 2T m = 4.85 roT, 
AT = 0.85 mT). The interpretation of  rigid hydro- 
carbon chains near the polar/apolar interface in the 
presence of cholesterol is consistent with the available 
wide-line NMR data [12, 29] .  Quantitative comparison 
between ESR and NMR data is difficult, and two 
recent NMR reports [38, 39] have suggested that 
ESR results may somewhat overestimate the width of 
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the correlation time distribution in liquid crystalline 
lecithin, so that ESR results should perhaps be viewed 
as essentially a qualitative reflection of the mobility 
of the unlabelled molecule. 

iii) Diffusion experiments 
a) Flip-flop across a bilayer 

The exchange of a spin-labelled phospholipid 
across a lipid bilayer (single bilayered vesicles produced 
by prolonged sonic irradiation) has been measured by 
selectively destroying label on one side of the vesicle 
by ascorbate [40]. The exchange rate was measured 
and was found to be slower than 2 × 10 -s times/sec. 

b) Lateral diffusion 
Using a headgroup spin-labelled lecithin in 

sonicated single bilayer vesicles of di(dihydrosterculoyl)- 
lecithin (sonication in.the presence of unsaturated lipids 
causes rapid loss of label paramagnetism), it has been 
shown that by analysis of the line-broadening of the 
-NMe a group caused by the presence of the label, that 
the frequency of molecular jumps leading to lateral 
diffusion must be greater than 3 X 103 jumps/sec [41]. 

1.4. X-Ray 
Single crystal structure determinations on synthetic 

phospholipids have not yet been reported, most work 
having been powder studies. 

The mesomorphic properties of diacylphosphatidyl- 
ethanolamines, phosphatidylcholines and phosphatidyl- 
serines have all been thoroughly studied [10]. On 
transformation of an anhydrous crystalline material 
into a liquid crystalline mesophase, long spacings 
decrease (e.g. with dimyristoyl phosphatidylethanol- 
amine the spacing decreases from 49.9 A to 34.5 A) 
[4]. This is accompanied by a change in short spacing, 
giving a diffuse 4.6 A line characteristic of liquid hydro- 
carbons. These two observations are consistent with a 
relatively disordered hydrocarbon interior. 

Powder studies on anhydrous natural phospholipids, 
and on numerous phospholipid water systems (see for 
example [1, 10]) have been reported. 

1,2-Dipalmitoyl-L-lecithin:cholesterol:water systems 
show only integral orders of a principal long spacing in 
the low-angle region. At constant lipid/water ratio at 
25 °C, there is a large increase in this long spacing on 
addition of cholesterol, which reaches a maximum of 
81 )~ at 7.5 mole % cholesterol. There is no observable 
change in the short spacing which remains at 4.2 
(characteristic of crystalline paraffinic chains). On 

further addition of cholesterol, there is a gradual 
decrease in long spacing to 64 A which is accompanied 
by a change in the short spacing to 4.45 A., and this 
spacing becomes diffuse [2]. 

These results correspond to 
a) a straightening of the hexagonally packed gel 

hydrocarbon chains, up to 7.5 mole % cholesterol, 
combined with an increase in the thickness of the 
water layer of 9 ~., to 27.5 A and 

b) a fluidisation of the hydrocarbon chains between 
7.5 and 50 mole % cholesterol, as indicated by the 
4.2 ~, sharp high angle spacing changing to a 4.45 )k 
(diffuse) spacing, together with a decrease in the long 
spacing of 17 )k due to the increased lateral motions 
of the chains. These latter ideas are consistent with the 
available ESR, NMR and calorimetric evidence [35, 
12, 2]. Between 7.5 and 42 mole % cholesterol the 
water layer thickness is constant since 30 wt % water 
can be taken up by both systems. The amount of 
unfreezable ?bound" water has been shown calori- 
metrically to be constant from 0-7.5 mole % cholester. 
ol, and then to increase (with constant water layer 
thickness) between 7.5 and 50 mole % cholesterol. 

1.5. Infra-Red and Laser-Raman Studies 
1.5.1. Infra-Red Spectroscopy 

Early work indicated that infra-red spectroscopy 
was an excellent technique for studying hydrocarbon 
chain mobility in lipids, and for the study of their 
thermotropic mesomorphism. The importance of 
cis/trans isomerism in determining transition tempera- 
tures was demonstrated with the dielaidoyl (trans- 
octadec-9-ene-oyl) and dioleyl (cis-octadec-9-ene-oyl) 
phosphatidylethanolamines [4]. The former is 
crystalline at room temperature and the latter is liquid 
crystalline, and this results in broadened absorption 
bands characteristic of liquid Fdms. The band at 720 
cm -~ , assigned to a rock mode of 4 or more all trans 
CH 2 groups, decreases in intensity on going from 
crystal -+ liquid crystal, and continues to decrease 
in intensity on further heating, due to the larger 
number of conformers occurring at higher tempera- 
tures. 

Infra-red studies in water or D20 are difficult, due 
to overlapping solvent bands, however, preliminary 
results have been reported with phosphatidylethanol- 
amines at low water concentrations [42]. 

ii) Raman Spectroscopy 
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A particular advantage of (laser) Raman spectro- 
scopy is that the effect depends on the change in 
polarisability of  the molecule during a vibration. 
Symmetric vibrations that are infra-red inactive can 
thus be seen in the Raman spectrum. In addition the 
absorption due to H20 around 1600 cm -1 is of low 
intensity. 

Laser Raman studies of the thermal phase transitions 
in lecithin and lecithin-cholesterol [11 ] have shed 
light on the cooperativity of the transition. Anhydrous 
dipalmitoyl lecithin has been suggested to undergo a 
non-cooperative thermal phase transition (a broad 
thermal phase transition is observed for anhydrous 
distearoyl lecithin, fig. 2a), as does dipalmitoyl 
lecithin-cholesterol (1 : 1), in excess water. The low 
cooperatively of the gel ~ liquid crystal phase transi- 
tion at intermediate cholesterol concentrations has 
also been suggested recently by Trauble [43]. 

Hopefully, by use of deuterium substitution, it 
should be possible to shift selected resonances to 
much lower energies so that it might be possible to 
detect the motions of different parts of a molecule in 
similar, or even more complex systems. 

2. Some Recent Studies on Biomembranes With High 
Cholesterol Levels 

2.1. Thermal Studies 
Differential scanning calorimetry studies of both 

myelin and erythrocyte membrane lipids have been 
reported [2, 44]. With myelin [2], it was shown that 
no thermal transition was obtained from 'intact' 
membranes in H20, or from total lipids in excess 
water. Removal of cholesterol from the total lipids 
resulted in a broad DSC transition encompassing 
the physiological 37 °C, to be observed. This indicates 
that gel and liquid crystalline regions are present in the 
cholesterol depleted lipids, and that an effect of 
cholesterol is to remove or fluidize the gel lipid areas 
(and presumably to make the liquid crystalline regions 
present, less fluid). Dehydration of the membranes 
likewise caused a DSC endotherm to be observed, 
since crystallisation of the cholesterol occurred, in- 
dicating the importance of water in preserving mem- 
brane structure. 

Erythrocyte ghosts do not show a phase transition 
by DSC, although cholesterol depleted lipids do. The 

observed transition encompasses 37 °C. However, an 
additional small endotherm at low temperatures has 
been detected [10] and attributed to the presence of 
highly unsaturated species i.e. the lipids form a kind 
of monotectic system [5,6] .  In the presence of 
cholesterol, no endotherms are detected from the 
lipids. Cholesterol may thus have a dual role of 
preventing formation of crystalline gel areas in some 
membranes whilst also inhibiting the motion of hydro- 
carbon chains in more fluid, liquid crystalline, regions. 

2.2. Nuclear Magnetic Resonance Studies 
2.2.1. Proton Wide-Line NMR 

Wide-line studies of myelin and erythrocytes have 
been reported [16, 44] and show the presence of very 
wide lines of ca. 0.2 mT and 0.5 mT (myelin) and 
0.2, 0.3, 0.34 and 0.58 mT (erythrocytes), similar to 
those seen in the lecithin-cholesterol system [ 12], 
and they may have similar origins. 

2.2.2. Proton High-Resolution NMR 
It has been reported [45] using 220 MHz proton 

NMR that the choline-l~Me 3 group in myelin is 
resolvable, and hence mobile, similar results have been 
reported for erythrocyte ghosts at 31 °C [46]. At 
18 °C [47] no spectrum is observed, though at 75 ° 
reversible dissociation of polypeptides from the mem- 
brane occurs [48]. Care must thus be taken in the 
treatment of membranes, since it is also known that 
many ghost proteins are water soluble [49]. 

Studies on ultrasonically dispersed membranes have 
also been reported [44, 50] and well resolved spectra 
have been obtained. 

2.2.3. Carbon-13 NMR 
Carbon-13 studies of erythrocyte membranes have 

been reported [51]. The resolution is better than that 
obtained from proton NMR, and again appears to in- 
dicate relatively mobile choline-NMe 3 groups. 

2.3. Electron Spin Resonance 
Spin labeling using labels of the fatty acid or 

steroid type e.g. the isoxazolidine derivative of 
androstan-3-one-17-/3-ol 
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OH 

O\ • 

have been used to investigate mobility in erythrocyte 
ghosts [52] as has the label TEMPO [53]. TEMPO 
has a low solubility in erythrocyte membranes, 
consistent with a large proportion of relatively highly 
ordered lipid domains. In shear-oriented erythrocyte 
ghosts [52] the N-oxyl-4',4'-dimethyl-oxazolidine 
derivatives of 5a-androstan-3-one-17/3-ol and sodium 
12-ketostearate showed moderately high spectral 
anisotropy. Both spectra were more immobilised than 
in model sonicated phosphatide dispersions, again 
indicating possible lipid-cholesterol and/or l ipid- 
protein interactions. 

The effect of cholesterol on the mobility of 
cholestane spin-labeled cholesterol-depleted brain 
lipids has been reported recently [54]. It was suggested 
that the cholesterol caused the hydrocarbon chains to 
become more 'ordered'. It may be that there is some 
preference of the spin label to probe the more fluid 
liquid-crystalline regions in this type of system [13, 
55], i.e. spin-label in liquid-crystalline regions 
becomes more ordered. 

2.4. X-Ray 
Recent studies have indicated that erythrocyte 

membranes contain a bilayer structure, as does myelin 
[561. 

2.5. Infra-Red Studies 
Infra-red studies of myelin and of erythrocyte 

ghosts, and of their extracted lipids have been reported 
[44, 57, 58]. 

Erythrocyte lipids show a prominent 720 cm -~ 
band due to a (CH2)n~> 4 rock mode, consistent with 
relatively ordered segments of hydrocarbon chain; this 
is in the presence of cholesterol. Intact membranes 
lack this distinctive feature, indicating possible lipid- 
protein interaction. 

3. Some Recent Studies on Biomembranes With Low 
Cholesterol Levels 

3.1. Thermal Studies 
It has been shown that the 'intact' plasma mem- 

branes and isolated lipids of Acholeplasma laidlawii 
B exhibit thermal phase transitions from gel ~ liquid 
crystal [59-61] .  These transitions are all broad, 
extending over ~ 30 °C, and thus are of low cooperativi- 
ty. The thermal transitions of the isolated lipids, fig. 7, 
closely resemble the transitions of the membranes 
themselves [59]. Grown in unsupplemented media, 
the transition range encompasses the growth tempera- 
ture [59, 60]. This means that at thegrowth tempera- 
ture, both rigid crystalline gel and fluid liquid crystal- 
line regions are present in the membrane lipids. A 
similar phenomenon has been observed with the mem- 
branes of Escheriehia eoli [62], where for organisms 
grown at 37 °C the thermal transition extends from 
~ 15 °C ~ 45 °C. Again, gel and liquid crystalline 
regions are present in the membrane lipids at their 
growth temperature. This interpretation is supported 
by recent X-ray results [63]. 

37"C 
growth temperature 

i cO 

I 
~ . . . ~ - - - ~  " ~ d )  

I 

I t I I t 

283 293 303 313"K 

Fig. 7. Differential scanning calorimetry thermograms of 
50 wt % dispersions of lipids extracted from A. laidlawii B: 
a) total lipids; b) glycolipids; c) phospholipids; d) neutral 
lipids; e) reconstituted total lipids (Chapman and Urbina [61]). 
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3.2. Nuclear Magnetic Resonance Studies 
Support for the existence of predominantly rigid 

hydrocarbon chains in the membranes of Achole- 
plasma laidlawii B membranes comes from deuteron 
NMR [64]. Cells supplemented with deuterated 
palmitic acid or lauric acid (which is elongated to 
myristic and palmitic acids) show DMR spectra, fig. 8, 
more characteristic of the gel state of  the model 
system di(perdeutero)myristoyl lecithin, than the 
liquid crystalline state of  this lipid, or of the model 
smectic liquid crystalline soap, potassium perdeutero- 
laurate-H20. ESR spin-labeling results, however, 
give spectra characteristic of a mobile nitroxide - 
indicating some preference of the label for the more 
fluid, liquid crystalline regions of this heterogenous 
membrane system [65]. 

That rapid growth can occur with almost all the 
membrane lipids in a rigid gel state is suprising, though 

cO 

c) 

b) 

d) 

e) 

tO 

I I 

Fig. 8. Theoretical and experimental deuteron magnetic 
resonance spectral lineshapes: a) theoretical powder line- 
shape, r/= 0; b) "O = 1.0; c) absorption spectrum of potassium 
perdeuterolaurate 70 wt %-H20, 30 °C, (smectic liquid 
crystalline); d) di(perdeutero)myristoyl lecithin 5 wt %- 
H20, 30 °C, (smectic liquid crystalline); e) 10 °C (gel state) 
f) A. laidlawii B membranes, supplemented with perdeutero- 
lauric acid 30 °C, spectrum recorded at 30 °C; g) supplemented 
with perdeuteropalmitic acid at 30 °C, spectrum recorded at 
30 °C; h) supplemented with perdeuteropalmitic acid at 37 °C, 

spectrum recorded at 37 °C (Oldfield et al. [64] ). 
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the results of Steim et al. [59] indicate that with 
stearate supplemented A. laidlawii B, that is the case. 

3.3. Electron spin resonance studies 
Spectra characteristic of highly mobile nitroxides 

have been obtained from a wide variety of membranes 
[66]. A central question in interpreting these results 
is to what extent a spin-label can detect 'rigid' regions 
in the presence of 'fluid' ones, i.e. what is the extent 
of the fluid environments, and also, can the spin-probe 
artifically create them? These questions are as yet not 
fully answered. However, indications that the 12NS 
spin-label may probe liquid crystalline regions in 
preference to gel regions have reeently been obtained, 
in model systems [55], and that labels can act as 
perturbants has been inferred by other workers 
[38, 39, 67, 68]. 
3.4. X-Ray 

X-Ray diffraction has been shown to be a powerful 
technique with which to obtain information on mem- 
brane heterogeneity. 

Engelman [69] has shown that in palmitate supple- 
mented A. laidlawii B, at the growth temperature 
both 4.15 A (gel) and 4.6 A (liquid crystalline) short 
spacings are obtained from the membranes. The gel 
region only disappears at 45 °C, i.e. well above the 
growth temperature of 37 °C. 

Esfahani et al. [63] have obtained similar results 
on E. coli K12. With elaidate supplemented mem- 
branes, the X-ray detected thermal phase transition 
extends from 30 °C ~ 40 °C in intact membranes 
(grown at 37 °C). With linolenate and myristoleate 
membranes the transitions extend from 36 °C ~ 46 °C 
- here the lipids (phosphatidylethanolamines) would 
appear to be in predominantly a gel state (as 
evidenced by the sharp 4.2 A band). It is interesting 
to note that fatty acids which might be expected to 
produce highly fluid lipids (i.e. linolenate, myristoleate, 
oleate) are taken up to a smaller extent than those 
expected to produce more rigid lipids e.g. elaidate [4]. 
There would thus appear to be a mechanism controll- 
hag fluidity which operates by increasing palmitate 
concentrations in the presence of linolenate etc. 
(Linolenate supplemented membranes contain 67% 
palmitate and 23% linolenate, elaidate supplemented 
membranes 75% elaidate and oaly 14% palmitate, 
reflecting the close physical similarities of dielaidoyl 
phosphatidylethanoiamine and dipalmitoyl phos- 
phatidylethanolamine [70]. 
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All the membrane lipid phase transitions o f  
Esfahani et al. were shown to occur at ~ 37 °C. The 
transition temperature o f  dipalmitoyl  phosphatidyl-  
ethanolamine is ~ 70 °C, i.e. admixture of  heterogenous 
lipids (and possible l i p id -p ro t e in  interaction) has 
brought the transition temperature down many 
degrees, and has caused formation o f  a broad transi- 
t ion, indicative of  heterogeneity and low-cooperativity,  
similar to the results found with A. laidlawii B lipids, 
fig. 7, and the model  lecithin-phosphatidylethanol- 
amine system, fig. I.  

In some instances, micro-organisms lacking 
cholesterol may regulate 'permeabi l i ty '  and mechani- 
cal stability by having heterogeneous gel and liquid 
crystalline regions in their membranes. 

The possibility that  "rigid" as well as " f lu id"  (or 
"l iquid-l ike") domains in biomembranes may be a 
common occurrence, would appear to be an important  
factor in constructing models for some biomembranes.  
That biologically relevant transport  processes can 
occur in rigid systems has recently been shown by 
Krasne et al. [71] ,  where it was demonstrated that  the 
ion translocating antibiotic,  gramicidin, was able to 
mediate potassium ion transport  in both "sol id"  as 
well as " l iquid"  black lipid membranes. 
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Appendix 

1) Abbreviations 

DSC : Differential scanning calorimetry. 
NMR : Nuclear magnetic resonance. 
DMR : Deuteron magnetic resonance. 
CMR : Carbon magnetic resonance. 
ESR : Electron spin resonance. 
T c : The onset temperature for a crystal -~ liquid 

crystal phase transition measured by DSC. 
Also, onset temperature for phase change of 
lower melting component in a monotectic 
system. 

Tma x : The maximum rate of melting of a mixed lipid 
system exhibiting a broad thermal phase transi- 
tion; describes maximum rate of melting of 
second component in a monotectic system. 

T : Tesla, S.I. unit  equivalent to 104 gauss. 
T 1 : Spin-lattice relaxation time: time constant 

describing return of spin system to thermal 
equilibrium after saturation. See Slichter for 
further discussion. 

T 2 : Spin-spin relaxation time: time constant 
describing 'dephasing' of spins after a r.f. pulse. 

See Slichter for discussion. 
2T m : Twice the maximal hyperfine splitting observed 

for a spin-label, a function of the order 
parameter S. 
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2) References to techniques 

X-Ray: 
V. Luzzati in: Biological Membranes:Physical Fact 
and Function, ed. D. Chapman (Academic Press, 
New York, London, 1968). 

Calorimetry: 
B.D. Ladbrooke and D. Chapman, Chem. Phys. 
Lipids 3 (1969) 304. 
W.J. Smothers and Y. Chaing, Differential Thermal 
Analysis, (Chemical Publishing Co., New York, 
1957). 
P.D. Garn, Thermoanalytical Methods of Investiga- 
tion (Academic Press, New York, 1965). 

Nuclear Magnetic Resonance: 
C.P. Slichter, Principles of Magnetic Resonance 
(Harper and Row, New York, 1964). 
T.C. Farrar and E.D. Becker, Pulse and Fourier 
Transform NMR (Academic Press, New York, 1971). 

J.W. Emsley, J. Feeney and L.H. Sutcliffe, High 
Resolution Nuclear Magnetic Resonance Spectro- 
scopy (Pergamon Press, Oxford, 1965). 

Electron Spin Resonance: 
HMI. McConnell and B.G. McFarland, Quart. Rev. 
Biophys. 3 (1970) 91. 
P. Jost, A.S. Waggoner and O.H. Griffith, in: 
Structure and Function of Biological Membranes, 
e.d.L.I. Rothfield (Academic Press, New York, 
London, 1971). 

Infra-Red: 
G. Herzberg, Infra-Red and Raman Spectra (Van 
Nostrand, New York, 1945). 

Laser Raman: 
M.C. Tobin, Laser Raman Spectroscopy (Wiley- 
Interscience, 1970). 
J. Loader, Basic Laser Raman Spectroscopy 
(Heydon and Son Ltd., London, 1970). 
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