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We screened 26 bisphosphonates against a farnesyl diphosphate synthase from Plasmodium ViVax, finding
a poor correlation between enzyme and cell growth inhibition (R2 ) 0.06). To better predict cell activity
data, we then used a combinatorial descriptor search in which pIC50(cell) ) a pIC50(enzyme) + bB + cC
+ d, where B and C are descriptors (such as SlogP), and a-d are coefficients. R2 increased from 0.01 to
0.74 (for a leave-two-out test set of 26 predictions). The method was then further validated using data for
nine other systems, including bacterial, viral, and mammalian cell systems. On average, experimental/predicted
cell pIC50 correlations increased from R2 ) 0.28 (for an enzyme-only test set) to 0.70 (for enzyme plus two
descriptor test set predictions), while predictions based on scrambled cell activity had no predictive value
(R2 ) 0.13). These results are of interest since they represent a general way to predict cell from enzyme
inhibition data, with in three cases, R2 values increasing from ∼0.02 to 0.72.

Introduction

Malaria causes ∼106 deaths annually, so there is considerable
interest in developing novel drugs to treat this disease. One
pathway of interest is that involved in the isoprenylation of
signaling proteins, where protein-farnesyl transferase inhibitors
have shown promise,1 since they act by preventing the post-
translational modification of proteins such as Ras. A second
potential target involves inhibition of the enzymes (such as
farnesyl diphosphate synthase, FPPSa) that produce the isoprene
diphosphates used in protein prenylation, and in recent work
we showed that bisphosphonates, drugs that target FPPS and
are widely used in treating bone resorption diseases,2 had both
in vitro and in vivo activity against Plasmodium parasites.3,4

There were, however, some puzzling aspects to the results;4 in
particular, the most active species against Plasmodium falci-
parum had little activity against a variety of expressed FPPS
enzymes, while other known potent FPPS inhibitors had low
activity against the parasite.

There are several possible explanations for these observations.
First, it might be that FPPS is not the actual (or only) target.
Second, there might be surprising differences in the sensitivity
of Plasmodium FPPS and human (or other) FPPS enzymes, since
Plasmodium FPPS can also produce geranylgeranyl diphosphate
(GGPP), due to a smaller barrier to chain elongation at the end
of the binding site. Third, it might just be difficult to obtain
good correlations between enzyme and cell inhibition data, due
to neglect of “transport” issues. This latter point is an exception-

ally important one5 and is of very broad general interest for
drug development, since while enzyme inhibition assays can
generally be carried out very rapidly (and accurately), cell based
assays are more expensive and take much longer. Indeed, in
some cases, cell data may be essentially uncorrelated with
enzyme inhibition. A good recent example of this is that of the
inhibition of undecaprenyl diphosphate synthase from Strepto-
coccus pneumoniae reported by Peukert et al.,6 in which an R2

) 0.03 is found from the reported cell/enzyme pIC50 () -log10

IC50) results, obviously complicating lead optimization using
enzyme based assays.

In this work, we report the inhibition of a Plasmodium FPPS
(from Plasmodium ViVax) by a library of 26 bisphosphonates
whose activity against P. falciparum cell growth in vitro was
reported previously.4 The P. falciparum and P. ViVax enzymes
have very similar sequences (73% identity, 89% similarity) and
catalytic site residues, but we find that there is essentially no
correlation between the cell and enzyme pIC50 values (R2 )
0.06). We find, however, that regression of cell, enzyme, and
two other descriptors leads to a remarkable improvement in the
correlation between experimental and predicted cell pIC50 (to
R2 ) 0.74), suggesting that small descriptor sets might be used
to predict cell activity results in many other systems, nine of
which (including other antiparasitic, antibacterial, antiviral,
antidiabetic, and anticancer drug leads) are investigated in this
work. Overall, our results show that cell activity in 10 very
varied systems can be well predicted by using enzyme inhibition
data, when combined with the combinatorial descriptor search
approach.

Results and Discussion

We show in Figure 1 the structures of the 26 bisphosphonates
(1-26) investigated previously.4 These compounds have IC50

values in P. falciparum growth inhibition varying from 1.43 to
222 µM4 with the most active species also having in vivo
activity in a Plasmodium berghei ANKA suppressive test (up
to an 80% reduction in parasitemia). The IC50/pIC50 values in
FPPS inhibition are presented in Table 1, together with the
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previously published cell growth inhibition results.4 When the
cell pIC50 and enzyme pIC50 values are compared, we see that
there is essentially no correlation between the two data sets (R2

) 0.06), Figure 2a, resulting in a leave-2-out set of predictions
having an R2 ) 0.01. For example, the most active species in
FPPS inhibition is 15 (IC50 ) 400 nM), but this compound has
poor activity in vitro (33.6 µM, Table 1). It might therefore be
thought that FPPS is not the actual (or only) target for these
bisphosphonates or that there are small but significant differences
in structure between the P. falciparum and P. ViVax enzymes.
However, on further inspection of Figure 2a, there appear to be
several possible “clusters” of compounds (A, B, and C in Figure

2a), with the more active species in cells having more
hydrophobic features. For example, in cluster A, known
bisphosphonates such as risedronate (20), ibandronate (16),
zoledronate (23), and minodronate (17) all have very poor (>70
µM) cell activity (Table 1), even though they have good activity
in the enzyme assay. Since these compounds are among the
most hydrophilic ones investigated (with an average SlogP )
-5.00, for nine compounds in this cluster), it is possible that
their poor cell based activity is due to poor transport. This idea
receives support from the observation that a second class of
bisphosphonates (such as 13, 15; cluster B, with average SlogP
) -4.60, for five compounds) that have improved hydrophobic-

Figure 1. Structures of the 26 compounds investigated in cell (Plasmodium falciparum) and enzyme (Plasmodium ViVax FPPS) assays.
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ity also exhibit improved cell activity, and compounds which
have the highest cell-based activity (1-6, Figure 1, cluster C)
also contain the most hydrophobic side chains (average SlogP
) -3.60, for 10 compounds). How can we put these qualitative
observations on a more quantitative footing? Can we predict
cell activity from the enzyme inhibition results? Also, if this
turns out to be possible in the Plasmodium system, can the
method be generalized to other systems, something that would
be of very broad, general interest?

The results shown in Table 1 and Figure 2a clearly indicate
that there is essentially no correlation between the cell pIC50

and enzyme pIC50 values. Why is this? While, as noted above,
there are several possibilities (other targets, poor P. ViVax/P.
falciparum similarity), the observation that cell based activity
appears to increase as hydrophobicity increases suggests the
possibility that cell permeability may be particularly important
in governing overall cell activity. To test this hypothesis, we
chose to represent the cell based activity (pIC50 (cell)) math-
ematically as

pIC50(cell)) a pIC50(enzyme)+ b SlogP+ c (1)

where SlogP is a computed oil/water partition coefficient.7 We
chose SlogP (rather than say clogP, etc.) without any particular
basis, a point we return to shortly. Data were analyzed by using
linear regression, from which we find a ) 1.26, b ) 0.62, and
c ) -0.34. Now, when the pIC50 (cell, experiment) results are
correlated with the predicted pIC50(cell) results, we find a good
correlation between experiment and prediction, with an R2 )
0.66. Given this promising result, we then sought to find other
descriptors and descriptor combinations that might give im-
proved predictivity, rather than restricting ourselves to SlogP.
In some initial calculations we used enzyme pIC50 values
together with three descriptors, or four random descriptors
chosen from MOE,7 that gave the best experimental versus
predicted R2 values. However, this approach was found to lead

to overfitting, since some predictions using randomized cell
activity data had R2 values of ∼0.5. We thus eventually chose
the following equation:

pIC50(cell)) a pIC50(enzyme)+ bB+ cC+ d (2)

in which two additional descriptors (B and C) were chosen from
a combinatorial search, performed on a large set of descriptors
(Supporting Information, Table S1) in MOE.7 We chose to fix
pIC50 (enzyme) as one descriptor, since the objective is to predict
cell activity from enzyme activity, where standard QSAR and
structure-based methods can be employed to optimize enzyme
inhibition. There are 230 descriptors available in MOE, and a
full search and cross-validation of all (26 335) two-descriptor
combinations for a data set containing 26 compounds is lengthy
(∼30 h). However, we found that it was not necessary to use

Table 1. Experimental IC50 and pIC50 Values for P. falciparum Growth
Inhibition and P. ViVax FPPS Inhibition

compounda
IC50

(enzyme, µM)
pIC50

(enzyme)b
IC50

(cell, µM)
pIC50

(cell)c

1 0.63 6.2 1.4 5.9
2 4.1 5.4 2.1 5.7
3 0.61 6.2 2.9 5.5
4 0.71 6.1 3.3 5.5
5 0.68 6.2 3.8 5.4
6 0.63 6.2 4.3 5.4
7 0.63 6.2 6.4 5.2
8 0.91 6.0 11 5.0
9 0.69 6.2 11 5.0

10 0.49 6.3 12 4.9
11 0.88 6.1 22 4.7
12 2.3 5.6 23 4.6
13 0.45 6.3 23 4.6
14 0.82 6.1 28 4.6
15 0.40 6.4 34 4.5
16 0.92 6.0 74 4.1
17 0.64 6.2 90 4.0
18 5.2 5.3 110 4.0
19 0.71 6.1 120 3.9
20 0.59 6.2 130 3.9
21 0.78 6.1 130 3.9
22 1.2 5.9 160 3.8
23 0.79 6.1 170 3.8
24 0.87 6.1 180 3.7
25 98 4.0 200 3.7
26 0.90 6.0 220 3.7

a See Figure 1 for chemical structures. b The enzyme assays were
performed on FPPS from Plasmodium ViVax. c The cell assay data is for
Plasmodium falciparum.4

Figure 2. Correlation plots for cell (Plasmodium falciparum) and
enzyme (Plasmodium ViVax FPPS) assays and predicted cell activities
from the training and test set data, obtained by using the combinatorial
descriptor search method. (a) Plot showing correlation between cell
pIC50 () -log10(IC50)) and enzyme pIC50 values. (b) Best correlation
between predicted cell pIC50 (enzyme plus two molecular descriptors)
and experimental pIC50 values: training set results. (c) Test set pIC50

predictions (leave-two-out analysis) plotted against the experimental
values. The R2 value increases from ∼0 to 0.74, when adding the two
molecular descriptors to the enzyme data. The colored circles (A-C)
indicate bisphosphonates with side chains having different relative
hydrophobicities and potencies in the cell assay (low, intermediate or
high, respectively), as discussed in the text.
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all the 230 descriptors, for two reasons: first, because some
descriptors are linear combinations of other descriptors in the
database, and second, because some descriptors are Boolean
(with predominantly either zeros or ones) and do not contribute
significantly in the linear regression. In the set of 26 P. ViVax
FPPS inhibitors, after eliminating redundant and Boolean
descriptors, we obtained 150 descriptors, of which all combina-
tions of two (D1, D2; D1, D3;. . . ; D1, D150; D2, D3; D2,
D4;. . . ; D2, D150; D3, D4;D3, D5;. . . ; D3, D150;. . . ; D148,
D149; D148, 150; 149, 150) were investigated, the coefficients
(a. . . d) being determined via linear regression. The 10 descrip-
tor combinations (pIC50; Bi; Cj) giving the highest R2 values
(for the training set experimental versus predicted pIC50

correlation) are shown in Table 2.
As can be seen in Table 2, the best experimental/predicted

pIC50 correlation has an R2 ) 0.77 (Figure 2b), a major increase
over the cell/enzyme correlation (R2 ) 0.06) alone. For the top
10 predictions, 9/10 contain a SlogP or logP(o/w) term, indicating
the importance of hydrophobicity in cell based activity. Also,
in 6/10 cases, this SlogP or logP(o/w) term has the largest relative
contribution to the correlation (Table 2). In the four cases where
this term does not dominate, enzyme activity dominates, but as
can be seen in Table 2, both enzyme pIC50 and logP-like terms
are important in all cases, and the R2 range is very small,
0.74-0.77. So, both enzyme and “logP” contribute to cell
activity, with the cell activity results apparently being well
predicted based on the enzyme inhibition and two-descriptor
model. Of course, considerable care needs to be taken in order
to not overfit data when using this approach. We tested this in
several ways: First, we used a leave-two-out (L2O) method in
which we systematically left out all possible pairs of data points
(26C2 ) 26 × 25/2 ) 325 calculations), re-evaluating the a-d
coefficients for all possible B and C descriptors (total time ∼12
h). The results of this L2O test set of predictions are shown
graphically in Figure 2c, where we find an R2 ) 0.74 for the
experimental/predicted pIC50 test set correlation, close to the
R2 ) 0.77 for the training set (Figure 2b). Second, we scrambled
the cell pIC50 values and repeated the L2O test set prediction,
10 times. On average, the R2 value was 0.16 for this scrambled
test set, strongly supporting the idea that the approach, when
applied to real cell growth inhibition data, is highly predictive.
Using larger numbers of descriptors increased the R2 value for
both the unscrambled and scrambled L2O data sets and is not
recommended, at least for relatively small data sets.

These results encouraged us to see to what extent this
approach might enable us to improve cell activity predictions,
based on enzyme activity and the combinatorial descriptor
search, for a variety of other systems. We first chose to
investigate two other systems we reported on previously:
Dictyostelium discoideum8 (a eukaryote used as a screen for

bone resorption drugs that target FPPS) and Leishmania
donoVani,3,9 a causative agent of visceral leishmaniasis. Both
systems (or very close relatives) have been shown by knockouts
or overexpression to require FPPS and that FPPS is the target
for bisphosphonate drugs or inhibitors.

For Dictyostelium discoideum growth inhibition,8 the cell/
enzyme R2 value is 0.49 (Figure 3a) or R2 ) 0.46 for a L2O
enzyme only test set, and this increases to R2 ) 0.70 for the
training set, using two additional descriptors (Figure 3b and
Supporting Information, Table S2), with pIC50 (enzyme) being
the most important contributor to the correlation. This is not
unexpected since, unlike the Plasmodium results, we do see a
correlation between cell and enzyme data, Figure 3a. The leave-
two-out test set results (Table 3, Figure 3c) are likewise good
(R2 ) 0.70) and as with the Plasmodium results, the scrambled
data set has essentially no predictivity (R2 ) 0.07). Slightly
improved results are obtained for Leishmania donoVani cell
growth inhibition. Here, the raw cell/enzyme correlation is R2

) 0.55 (Table 3, Figure 3d), translating to a L2O enzyme-based
test set R2 ) 0.47. The experimental /predicted cell pIC50

correlation increases to R2 ) 0.87 for the training set using two
additional descriptors (Figure 3e and Supporting Information,
Table S3) and 0.80 for the L2O test set results (Figure 3f), while
using scrambled cell data yields R2 ) 0.11 (Table 3). We should
also note here that in both Dicytostelium discoideum and L.
donoVani, FPPS inhibition results for the specific organisms
were not available so we used a composite data set of
Trypanosoma brucei,10 Trypanosoma cruzi,11 Leishmania ma-
jor,12 and human13 FPPS results to model the D. discoideum
and L. donoVani data, just as we used P. ViVax data to interpret
the P. falciparum results. Naturally, it is reasonable to believe
that using, e.g., L. donoVani FPPS to model L. donoVani growth
inhibition will be preferred to using, e.g., L. major FPPS
inhibition data. However, the predictions are still good, with
for P. falciparum, D. discoideum, and L. donoVani, the average
R2 value increasing from 0.37 (cell/enzyme L2O test set
predictions) to 0.75, using pIC50 (enzyme) plus two descriptors,
while the average R2 for the scrambled cell activity data sets is
R2 ) 0.11. However, given that all of the inhibitors studied
here are bisphosphonates and the targets protozoa or a unicellular
eukaryote, it is fair to ask, is this method robust? Does it apply
to other types of cell and inhibitor? Is it, in short, a general
method for probing cell activity based on enzyme inhibition?

Antibacterial and Antiviral Systems. To test the generality
of this approach, we investigated two bacterial and two viral
systems. In each case, the enzyme targeted in the enzyme assay
was the same as that targeted in the cell based assay. In one
recent study, workers at Novartis6 reported the discovery of a
series of novel inhibitors (tetramic, tetronic acids, and dihy-
dropyridin-2-ones) of the enzyme undecaprenyl diphosphate

Table 2. Top 10 “Enzyme Plus 2-Descriptor” Combinations with Coefficients and Relative Contributions for P. falciparum Growth Inhibition
Predictions

rank R2
coefficient

aa (enzyme)

relative
contribution

(enzyme) coefficient ba descriptor Bb
relative

contribution (B) coefficient ca descriptor Cb
relative

contribution (C) constant, da

1 0.77 1.0407 0.72 0.52375 logP(o/w) 1.00 -0.0028993 E_sol 0.47 -3.2113
2 0.76 1.3081 0.84 -0.5824 logS 1.00 4.6753 E_oop 0.42 -3.7232
3 0.76 1.0806 0.69 0.56454 logP(o/w) 1.00 4.9535 GCUT_SMR_0 0.45 1.4987
4 0.75 1.3317 1.00 0.42892 SlogP 0.75 0.011375 PEOE_VSA_NEG 0.50 -3.7753
5 0.75 0.98902 0.70 0.51324 logP(o/w) 1.00 -292.05 BCUT_PEOE_1 0.44 -203.38
6 0.75 1.2344 0.85 0.62848 SlogP 1.00 1.0862 E_strain 0.30 -0.23834
7 0.75 1.342 1.00 0.5162 SlogP 0.89 0.17337 chi1_C 0.40 -1.8939
8 0.75 1.2085 1.00 0.49972 SlogP 0.96 1.8143 GCUT_SLOGP_1 0.42 0.49546
9 0.75 1.044 0.74 0.51263 logP(o/w) 1.00 0.86654 BCUT_SLOGP_0 0.44 1.5301
10 0.74 1.0733 1.00 0.44935 SlogP 0.97 0.0098483 PEOE_VSA-1 0.49 -0.61185

a From the equation, pIC50 (cell) ) a pIC50 (enzyme) + bB + cC + d. b Descriptors selected are described in Supporting Information, Table S1.
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synthase (UPPS) that also had good cellular activity.6 These
inhibitors are of interest since UPPS is a potentially important
target for anti-infective development, because undecaprenyl
diphosphate is used in lipid A biosynthesis, and UPPS inhibition
is expected to block bacterial cell wall biosynthesis. Also, the
structures of some UPPS enzymes are now known.14,15 Strep-
tococcus pneumoniae enzyme and (approximate) cell growth
inhibition results (inhibition at 1, 2, 4 µM, etc. inhibitor

concentrations) were reported, but as with our Plasmodium
results, there is little correlation between the cell growth and
enzyme inhibition data sets (R2 ) 0.03; Figure 3g), even though
in this case the enzyme target (S. pneumoniae UPPS) is thought
to be exactly the same as that present in the bacterium,
Streptococcus pneumoniae.6 The small range in cell activity
(128×) combined with the limited precision of the cell data
(the IC50 values were rounded off by factors of 2) makes this a

Figure 3. Correlation plots for the cell and enzyme assays, and predicted cell activities from the training and test set data in Dictyostelium discoideum
(a-c), Leishmania donoVani (d-f), and Streptococcus pneumoniae (g-i). (a) Plot showing the correlation between cell (D. discoideum) pIC50 and
enzyme (FPPS) pIC50 values. (b) Correlation between predicted cell pIC50 values (from the best combination of enzyme plus two molecular descriptors)
for the training set, with the experimental pIC50. (c) Correlation between test set pIC50 predictions obtained from a leave-two-out analysis. (d) Plot
showing the correlation between cell (L. donoVani) pIC50 and enzyme (FPPS) pIC50 values. (e) Correlation between predicted cell pIC50 values
(from the best combination of enzyme plus two molecular descriptors) for the training set, with the experimental pIC50. (f) Correlation between test
set pIC50 predictions obtained from a leave-two-out analysis. (g) Plot showing the correlation between cell (S. pneumoniae) pIC50 and enzyme
(UPPS) pIC50 values. (h) Correlation between predicted cell pIC50 values (from the best combination of enzyme plus two molecular descriptors) for
the training set, with the experimental pIC50. (i) Correlation between test set pIC50 predictions obtained from a leave-two-out analysis.

Table 3. Results for 10 Different Systems Showing the Correlations between Enzyme and Cell Activities and the Correlations between Experimental
and Predicted Cell Activities

target cell
R2, enzyme

vs cell
R2, enzyme

test seta
R2, training

setb
R2, test

seta
R2,

scrambledc
descriptors

tested
number of
compounds

FPPS Plasmodium falciparum 0.06 0.01 0.77 0.74 0.16 150 26
FPPS Dictyostelium discoideum 0.49 0.46 0.70 0.70 0.07 123 102
FPPS Leishmania donoVani 0.55 0.47 0.87 0.80 0.11 138 21
UPPS Streptococcus pneumoniae 0.03 0.10 0.71 0.69 0.14 109 27
MurI Streptococcus pneumoniae 0.61 0.57 0.72 0.68 0.13 123 42
HCV NS3 Protease Hu-7 0.03 0.02 0.78 0.77 0.12 142 34
HIV-1 integrase MT4 0.12 0.04 0.69 0.64 0.13 126 30
HLG Phosphorylase rat hepatocytes 0.55 0.48 0.71 0.74 0.19 132 35
KDR kinase NIH 3T3 0.36 0.30 0.60 0.58 0.09 117 42
Akt Kinase MiaPaCa-2 (pancreatic cancer) 0.41 0.35 0.68 0.68 0.12 80 48
average 0.32 0.28 0.72 0.70 0.13 124 42

a Correlation obtained from a leave-two-out analysis. b Correlations based on cell activity predictions using a combinatorial descriptor search. c Average
correlation obtained from a leave-two-out analysis of 10 sets of scrambled data.
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challenging case. Even so, using the reported enzyme pIC50

results together with two descriptors yields a considerable
improvement, with R2 increasing from 0.10 for the L2O test
set using enzyme data only, to R2 ) 0.69 (Figure 3i) for the
L2O test set predictions using two extra descriptors, with R2

for the L2O test set using scrambled data being 0.14, Table 3.
As can be seen in the Supporting Information (Table S4),
descriptors such as SlogP and logS (also found in the Plasmo-
dium data sets) are again found here and, when combined with
enzyme inhibition data, enable greatly improved predictions of
the cell activity results. Another set of antibacterials are glutamic
acid analogues that inhibit S. pneumoniae glutamate racemase
(MurI).16 In this case, there is a moderate correlation between
cell growth and MurI inhibition (R2 ) 0.61), and this increases
to 0.72 (training) or 0.68 (leave-two-out) test set predictions
using the combinatorial descriptor search, Table 3 and Sup-
porting Information, Figure S1 and Table S5, with the R2 for
scrambled cell activity test set data being 0.13.

In addition to these results with antibacterial systems, we find
good predictivity in an antiviral assay using hepatitis C virus
protease inhibitors.17 Here, there is again a very poor correlation
between enzyme and cell pIC50 values (obtained in a cell-based
replicon assay) with R2 ) 0.03 (Supporting Information, Figure
S1d). This increases to R2 ) 0.78 (training) and R2 ) 0.77
(leave-two-out) test set results (Supporting Information, parts
e and f of Figure S1) with incorporation of two additional
descriptors. In this case, the best results were obtained by using
PAMPA (parallel artificial membrane permeability assay) as one
of the descriptors (determined experimentally by Li et al.17). In
these calculations, we added reported PAMPA, Caco-2, logP-
neutral, logD-pH 7.4, clogP, and mlog P values to the 230
potential descriptor fields in MOE, with PAMPA being selected
in the descriptor search as the most important descriptor,
followed by the enzyme pKi (Supporting Information, Table S6).
So, the predictivity of the method can be improved when
experimental data on permeability is available.

We also investigated a second series of antivirals, novel
phthalimide-analogue inhibitors of HIV-1 integrase.18 The
results of enzyme pIC50, HIV-1 replication in a cell-based assay
(pEC50), as well as cell-based toxicity (pCC50) have been
reported.18 There is only a very poor correlation between the
enzyme pIC50 and cell-based replication activity (pEC50), with
R2 ) 0.12 (Supporting Information, Figure S1g; R2 ) 0.01 for
the L2O enzyme based test set). Using the combinatorial
descriptor search, we find that pCC50 is the most important
descriptor, enabling an experimental versus predicted pIC50 R2

) 0.69 (Supporting Information, Figure S1h). That is, pCC50

makes the major contribution to the apparent cell (HIV)
replication results (Supporting Information, Table S7), an
observation of interest for further optimization of this class of
compounds. Also on average, for the four antibacterial/antiviral
systems, we see that R2 increases from 0.20 to 0.70 (L2O test
sets) on addition of two descriptors, about the same as that found
for the protozoal/primitive eukaryote systems with scrambled
cell data, R2 ) 0.13, about the same as the R2 ) 0.11 found
with the protozoa/simple eukaryotes.

Mammalian Cell Lines: Antidiabetic and Anticancer
Drugs. Finally, we wanted to test the method described above
on three mammalian cell lines, in diabetes and cancer assays,
as opposed to the primarily anti-infective drugs/targets described
in the preceding sections. We investigated three systems: acyl
urea inhibitors of human liver glycogen phosphorylase (hlGP)19

having activity in rat hepatocytes; 1,4-dihydroindeno[1,2-
c]pyrazoles targeting a KDR kinase in NIH3T3 cells;20 and an

indazole-pyridine series of protein kinase B/Akt inhibitors, active
in pancreatic cancer cells.21

In the case of the acyl urea inhibitors of human liver glycogen
phosphorylase, the enzyme/cell correlation was already evident
(R2 ) 0.55), and this improved to R2 ) 0.74 for the L2O test
set of 35 compounds, Table 3 and Supporting Information,
Figure S2a-c and Table S8. The scrambled data was, as
expected, not predictive, with an R2 ) 0.19. Results for the
KDR kinase (Table 3 and Supporting Information, Figure S2d-f
and Table S9) were slightly worse (L2O test set R2 ) 0.58),
while results with the Akt kinase (Table 3 and Supporting
Information, Figure S2g-i) were good, with an R2 ) 0.68 for
the test set (Supporting Information, Table S10).

Conclusions

The results described above are of interest for several reasons.
First, we screened a library of bisphosphonates against a P. ViVax
FPPS enzyme. The results were surprising since we found that
inhibition of the P. ViVax enzyme was essentially uncorrelated
with growth inhibition by these same bisphosphonates of the
malaria parasite, P. falciparum. However, when pIC50 results
together with two additional descriptors were regressed against
cell growth inhibition pIC50 results, we found good predictivity
of the cell results, with an R2 ) 0.77 (0.74 for a leave-two-out
test set). This observation then led to a general method for
predicting the cell-based activity of a compound from its activity
in an enzyme assay, in which we use a combinatorial descriptor
search to choose two descriptors (B and C) that, in combination
with the enzyme pIC50 results, enabled relatively good cell
activity predictions. For the 10 diverse systems investigated here,
which cover antiparasitic, antibacterial, antiviral, antidiabetes,
and anticancer drug candidates, the average R2 value increases
from 0.28 for the leave-two-out test set predictions using solely
enzyme inhibition data to 0.70 for the leave two-out test sets
with two additional descriptors, to be compared with 0.13 for
predictions based on randomized cell activity data. This ap-
proach should be particularly useful in optimizing cell activity
when target structures are known, since structure-based (X-ray,
QSAR) methods can be used to optimize enzyme inhibition,
with the combinatorial descriptor search then being used to make
good predictions of cell based activity. Also, when experimental
data on permeability is available, this can be included in the
descriptor field as another potential descriptor, to be used in
cell activity predictions. A larger number of descriptors than
the (on average) 124 we employed can also of course be used,
at the expense of computational time, which can become large
(∼300 h for a 230 descriptor based series of calculations,
including validation tests). The approach described above should
thus enable the use of both crystallographic and enzyme QSAR
data for enzyme inhibition optimization, with cell growth
inhibition (or viral replication) activity being described using
the combinatorial descriptor approach. The method should also
be applicable in some cases to modeling toxicity and in vivo
results as well, when sufficient data is available.

Experimental Section

P. WiWax FPPS Expression and Inhibition. A clone encoding
P. ViVax FPPS (PlasmoDB gene ID: Pv092040) with an N-
terminally His6-tagged fusion protein and a TEV protease site was
expressed in Escherichia coli BL21-codon Plus (DE3) RIL (Strat-
agene) at 20 °C in baffled flasks. Cells were lysed in the presence
of lysozyme (Sigma), Benzonase Nuclease (Novagen), and a
protease inhibitor cocktail (Sigma), and protein purified chromato-
graphically by using a Ni-NTA resin. The P. ViVax FPPS assays
were carried out by using 96-well plates with 150 µL of reaction
mixture in each well. The condensation of geranyl diphosphate
(GPP) with isopentenyl diphosphate (IPP) was monitored at room
temperature by using a continuous spectrophotometric assay for
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phosphate releasing enzymes in a reaction mixture containing 25
mM Hepes and 2.5 mM MgCl2 at pH 7.4. The inhibitors were
preincubated with the enzyme for 30 min at room temperature. The
IC50 values were obtained from fitting the dose-response curve
using Prism 4.0.22

Computational Aspects. We performed a complete combina-
torial descriptor search in MATLAB23 (running on a dual 2 GHz
PowerPC G5 or a Dual-Core Intel Xeon Mac Pro), using linear
regression of enzyme pIC50 plus all possible two-descriptor
combinations (150C2 ) 11 175 combinations for a database contain-
ing 150 descriptors, for example, against the cell activities,
pIC50(cell). For the leave-two-out (L2O) cross-validation, the same
exhaustive search was performed, using a training set obtained by
leaving out two compounds from the initial data set. This process
was repeated for all pairwise combinations of the compounds (e.g.,
for 26 compounds, 1,2; 1,3;. . . 0.1,26; 2,3; 2,4;. . . ; 24,25; 24,26;
25,26). So, if there are 26 compounds (as in P. ViVax), then each
compound is left out (and predicted) 25 times. In this way, for P.
ViVax FPPS we obtained 25 predicted values for each compound
in the data set, and these were then averaged to give the overall
leave-two-out predicted value, for each compound. To test whether
the correlations obtained might occur by chance, we randomly
scrambled the cell activities, then performed the leave-two-out
validation on the scrambled data. The process was repeated 10
times, and the mean R2 values are reported. For the 10 systems
investigated, each scrambling analysis requires ∼10-90 h, depend-
ing upon the number of descriptors (80-150) and the number of
compounds (21-102) in the data set. Linearly dependent descriptors
were eliminated based on the occurrence of rank deficiency in the
descriptor correlation matrix (in MATLAB23).
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