Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates:

A Crystallographic and Computational Investigation

Cammy K.-M. Chen^{o^{+†}}, Michael P. Hudock^{o||}, Yonghui Zhang^{o^{II}}</sup>,</sup>

Rey-Ting Guo^{‡§}, Rong Cao¹¹, Joo Hwan No¹¹, Po-Huang Liang^{†‡},

Tzu-Ping Ko[‡], Tao-Hsin Chang^{‡§}, Shiou-chi Chang[¶], Yongcheng Song[¶],

Jordan Axelson[¶], Anup Kumar[¶], Andrew H.-J. Wang^{t‡§}* and Eric Oldfield^{¶||}*

Supporting Information

Table of Contents

Supporting Methods	S2-S5
Supporting Figures	S6-S11
Binding modes of GGPPS inhibitors	S6
11 (BPH-23) (PDB File: 2z52) bound to GGPPS superimposed on FPP, FsP	P + IPP
and GGPP complex structures	
Ligand interaction diagrams	S8-S9
Binding motif of bisphosphonate-GGPP complex structures	S10
Electron densities	S11
Supporting Tables	.S12-S23
Data collection and refinement statistics	S12
Comparison of Liaison results for protein target receptors investigated	S13
X-ray/Glide docking RMSD calculations	S14
Liaison scoring function parameterization output	
CoMSIA results	
Microanalysis data	S23
Supporting Methods:	

2-[3-(3, 7-Dimethyl-octa-2, 6-dienyl)-pyridinium-1-yl]ethylidene-1,1-bisphosphonic acid (44). Anal (C₁₇H₂₇NO₆P₂•0.5H₂O) C, H, N. ¹H NMR (D₂O, 400 MHz): δ 8.58 (1H, s), 8.45 (1H, d, *J* = 6 Hz), 8.01 (1H, d, *J* = 8Hz), 7.62 (1H, dd, *J* = 6Hz, 12.4 Hz), 5.2 (1H, t, *J* = 7.2Hz), 4.9 (1H, t, *J* = 7.5Hz), 4.6-4.8 (2H, m), 3.42 (2H, d, *J* = 7.2 Hz), 2.10 (1H, tt, *J* = 6.5Hz, 21Hz), 1.89-1.96 (4H, m), 1.52 (3H, s), 1.46 (3H, s), 1.40 (3H, S). ³¹P NMR (D₂O, 162M Hz): δ 15.3.

2-(3-Decylpyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (17)

Anal (C₁₇H₃₁NO₆P₂•0.5H₂O) C, H, N. ¹H NMR (D₂O, 400 MHz): δ 8.60 (1H,s), 8.55 (1H, d, J = 6.0 Hz), 8.07 (1H, d, J = 7.5Hz), 7.64 (1H, t, J = 6.5Hz), 4.6-4.8 (2H, m), 2.62 (2H, t, J = 7.5Hz), 2.09 (1H, tt, J = 21Hz, 7.0Hz), 1.48-1.52 (2H, m), 1.00-1.19 (10H, m), 0.69 (3H, t, J = 6.5Hz). ³¹P NMR (D₂O, 162M Hz): δ 15.7.

2-(3-Octylsulfonamidopyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (34).

Anal (C₁₅H₂₈N₂O₈P₂S) C, H, N. ¹H NMR (D₂O, 400 MHz): δ 8.01-8.10 (2H, m), 7.74 (1H, d, J = 8.8Hz),

7.47 (1H, dd, J = 12Hz, 6Hz), 4.53-4.67 (2H, m), 3.0 (2H, t, J = 7.2Hz), 2.15 (1H, tt, J = 21Hz, 7.2Hz),

1.42-1.62 (2H, m), 0.98-1.30 (10H, m), 0.62 (3H, t, J = 6.8Hz). ³¹P NMR (D₂O, 162M Hz): δ 14.9.

2-(3-Bromo-5-decyloxylpyridinium-1-yl)ethylidiene-1,1-bisphosphonic acid. (18).

Anal $(C_{17}H_{29}BrNNaO_7P_2)$ C, H, N. ¹H NMR $(D_2O, 500 \text{ MHz})$: δ 8.62 (1H, s), 8.54 (1H, s), 8.06 (1H, s), 4.59-4.74 (2H, m), 4.09 (2H, t, *J* = 6.5Hz), 2.25 (1H, tt, *J* = 22.5Hz, 7.5Hz), 1.60-1.68 (2H, m), 1.00-1.29 (14H, m), 0.68 (3H, t, *J* = 7.0Hz). ³¹P NMR $(D_2O, 202M \text{ Hz})$: δ 14.4.

2-[Decyloxy-5-(3, 5-difluoro-phenyl)-pyridinum-1-yl]ethylidene-1,1-bisphosphonic acid. (13). Anal (C₂₃H₃₃F₂NO₇P₂•0.5H₂O) C, H, N. ¹H NMR (D₂O, 500 MHz): δ 8.82 (1H, s), 8.66 (1H, s), 7.55 (1H, s), 7.05 (1H, d, *J* = 6.0Hz), 6.75 (1H, t, *J* = 9Hz), 4.75-4.83 (2H, m), (1H, s), 4.09 (2H, t, J = 6.5Hz), 2.25 (1H, tt, *J* = 22.5Hz, 7.5Hz), 1.60-1.68 (2H, m), 1.00-1.29 (14H, m), 0.53 (3H, t, J = 7.5Hz). ³¹P NMR (D₂O, 202M Hz): δ 14.4. ¹⁹F NMR (D₂O, 470M Hz): δ -108.6.

2-[3-(3-Butoxyphenyl)pyridinium-1-yl]ethylidene-1,1-bisphosphonic acid (35).

Anal (C₁₇H₂₃NO₇P₂) C, H, N. ¹H NMR (D₂O, 500 MHz): δ 9.07 (1H, s), 8.73 (1H, d, J = 6Hz), 8.43 (1H, d, J

J = 8Hz), 7.81 (1H, t, *J* = 8.0Hz), 7.35 (1H, t, *J* = 8.0Hz), 7.19 (1H, d, *J* = 8.0Hz), 7.17 (1H, s), 6.97 (1H, d, *J*

=8.0Hz), 4.68-4.85 (2H, m), 3.89 (2H, t, J = 6.5Hz), 2.28 (1H, tt, J= 21Hz, 7.0Hz), 1.55-1.63 (2H, m), 1.25-

1.29 (2H, m), 1.11-1.21 (2H, m), 0.69 (3H, t, J = 6.0Hz). ³¹P NMR (D₂O, 202M Hz): δ 15.4.

2-(3-Dodecyloxypyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (36).

Anal (C₁₉H₃₅NO₇P₂•0.5H₂O) C, H, N. ¹H NMR (D₂O, 400 MHz): δ 8.40 (1H, t, *J* = 7.2Hz), 8.25 (1H, d, *J* = 4.0Hz) 7.52-7.61 (2H, m), 4.50-4.63 (2H, m), 3.90 (2H, t, *J* = 6.0Hz), 2.25 (1H, tt, *J* = 22Hz, 7.0Hz), 1.52-

1.64 (2H, m), 1.00-1.29 (18H, m), 0.69 (3H, t, J = 6.5Hz). ³¹P NMR (D₂O, 202M Hz): δ 14.3.

2-[3-(3,7-Dimethyl-octyloxy)-pyridinium-1-yl]ethylidene-1,1-bisphosphonic acid (24)

Anal $(C_{17}H_{31}NO_{7}P_{2} \bullet 0.75H_{2}O) C$, H. ¹H NMR $(D_{2}O, 500 \text{ MHz})$: $\delta 8.89 (1H, s)$, 8.43 (1H, d, J = 6Hz), 7.86

(1H, d, J = 8Hz), 7.71 (1H, t, J = 8.0Hz), 4.68-4.80 (2H, m), 4.25 (2H, t, J = 6.5Hz), 2.23 (1H, tt, J = 21Hz,

7.0Hz), 1.78-1.87 (1H, m), 1.56-1.69 (2H, m), 1.40-1.50 (1H, m), 1.00-1.3.2 (6H, m), 0.82 (3H, d, J =

6.5Hz), 0.74 (3H, d, J = 6.5Hz). ³¹P NMR (D₂O, 202M Hz): δ 15.4.

2-[3-(2-Ethoxy-ethoxy)propylpyridinium-1-yl]ethylidene-1,1-bisphosphonic acid (54).

Anal. $(C_{14}H_{24}NNaO_{8}P_{2})$ C, H. ¹H NMR $(D_{2}O, 500 \text{ MHz})$: δ 8.65 (1H, s), 8.58 (1H, d, J = 6Hz), 8.23 (1H, d, J = 6Hz)

J = 8Hz), 7.78 (1H, t, *J* = 8.0Hz), 4.68-4.80 (2H, m), 3.39 (8H, m), 2.65-2.80 (2H, t, *J* = 6.5Hz, 1H,

overlapped, m), 1.82 (2H, m), 1.00 (3H, t, J = 7 Hz). ³¹P NMR (D₂O, 202M Hz): δ 15.4.

2-(3-Decyloxypyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (15).

Anal $(C_{17}H_{31}NO_7P_2 \bullet 0.5H_2O)$ C, H, N. ¹H NMR $(D_2O, 400 \text{ MHz})$: $\delta 8.50 (1H, t, J = 7.2Hz)$, 8.25 (1H, d, J = 6.0Hz) 7.71 (2H, d, J = 8Hz), 7.60 (1H, t, J = 8Hz), 4.50-4.63 (2H, m), 4.00 (2H, t, J = 6.5Hz), 2.11 (1H, tt, J = 22Hz, 7.0Hz), 1.52-1.64 (2H, m), 1.00-1.29 (14H, m), 0.64 (3H, t, J = 6.5Hz). ³¹P NMR (D₂O, 202M Hz): $\delta 15.69$.

2-(4-Octylpyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (20)

Anal $(C_{15}H_{27}NO_6P_2 \bullet 0.75H_2O)C$, H, N. ¹H NMR $(D_2O, 500 \text{ MHz})$: $\delta 8.52 (2H, d, J = 6.5Hz)$, 7.55 (2H, t, J = 6.5Hz), 4.68-4.80 (2H, m), 2.68 (2H, t, J = 7.5Hz), 2.15 (1H, t, J = 22Hz, 7.0Hz), 1.49-1.53 (2H, m), 1.00-1.21 (10H, m), 0.63 (3H, t, J = 6.5Hz). ³¹P NMR $(D_2O, 202M \text{ Hz})$: $\delta 15.2$.

2-(3-Heptyloxypyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (30).

Anal ($C_{14}H_{25}NO_7P_2 \bullet 0.5H_2O$) C, H, N. ¹H NMR (D_2O , 400 MHz): δ 8.42 (1H, t, *J* = 7.2Hz), 8.25 (1H, d, *J* = 6.0Hz) 7.71 (2H, d, *J* = 8.8Hz), 7.60 (1H, t, *J* = 8.8Hz), 4.50-4.63 (2H, m), 4.00 (2H, t, *J* = 6.4Hz), 2.11 (1H, t, *J* = 21Hz, 6.8Hz), 1.52-1.64 (2H, m), 1.00-1.29 (6H, m), 0.64 (3H, t, *J* = 6.8Hz). ³¹P NMR (D_2O , 162M Hz): δ 15.64.

2-(3-Decylaminopyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (26).

Anal (C₁₇H₃₂N₂O₆P₂•0.75H₂O)C, H, N. ¹H NMR (D₂O, 400 MHz): δ 7.92 (1H, s), 7.83 (1H, d, *J* = 5.2Hz), 7.20-7.31 (2H, m), 2.1 (2H, t, *J* = 6.8Hz), 2.20-2.31 (1H, m), 1.52-1.64 (2H, m), 1.00-1.29 (14H, m), 0.68 (3H, t, *J* = 6.8Hz). ³¹P NMR (D₂O, 162M Hz): δ 14.75.

2-(3-Hexylpyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (42).

Anal. (C₁₃H₂₂NNAO₆P₂•0.5H₂O) C, H. N. 1H NMR (500 MHz, D2O): δ 8.53-8.60 (m, 2H), 8.18 (d, *J* = 8 Hz, 1H), 7.72 (t, *J* = 6 Hz, 1H), 4.65-4.80 (m, 2H), 2.55-2.70 (m, 3H), 1.45-1.50 (m, 2H), 1.05-1.20 (m, 6H), 0.66 (t, *J* = 6.5 Hz, 3H). 31P NMR (202 MHz, D2O): δ 14.6.

2-[3-(Octyn-1-yl)pyridinium-1-yl]ethylidene-1,1-bisphosphonic acid (29).

Anal. ($C_{15}H_{23}NO_6P_2 \bullet 0.5H_2O$). 1H NMR (500 MHz, D2O): δ 8.78 (s, 1H), 8.65 (d, *J* = 8 Hz, 1H), 8.27 (d, *J* = 8 Hz, 1H), 7.79 (t, *J* = 6 Hz, 1H), 4.65-4.80 (m, 2H), 2.60-2.70 (m, 1H), 2.33 (t, *J* = 6 Hz, 1H), 1.15-1.50 (m, 8H); 0.69 (t, *J* = 6.5 Hz, 3H); ³¹P NMR (202 MHz, D2O): δ 14.7.

1-Hydroxy-2-(3-octylpyridinium-1-yl)ethylidene-1,1-bisphosphonic acid (27).

Anal. (C₁₅H₂₅NO₇P₂Na₂ •H₂O) C, H. N. 1H NMR (500 MHz, D2O): δ 8.53-8.60 (m, 2H); 8.15 (d, *J* = 8 Hz, 1H), 7.68 (t, *J* = 6 Hz, 1H), 4.65-4.80 (m, 2H), 2.67 (t, *J* = 6.5 Hz, 2H), 1.45-1.50 (m, 2H), 1.05-1.20 (m, 10H), 0.68 (t, *J* = 6.5 Hz, 3H, CH3); ³¹P NMR (202 MHz, D2O): δ 14.5.

Figure S1: Binding modes observed in *S. cerevisae* GGPPS-bisphosphonate complexes.

Figure adapted from Guo et al., PNAS USA, 104, 10022-10027 (2007).

Figure S2: 11 (BPH-23) (PDB File: 2z52) bound to GGPPS superimposed on FPP, FsPP + IPP and GGPP complex structures (PDB Files: 2e90, 2e8t, 2z4v). The "BPH" designations shown below are those used in the respective PDB File entries.

Figure S3: Ligand interactions diagrams for GGPPS-bisphosphonate complexes BPH-252, BPH-252-P21, BPH-23, BPH-28 (PDB Files: 2z4y, 2z4x, 2z52, 2z60). The "BPH" designations shown below are those used in the respective PDB File entries.

Figure S4: Ligand Interaction diagrams for GGPPS-bisphosphonate complexes BPH-749, BPH-798 and BPH-806 (PDB Files: 2z4w, 2z4z, 2z78). The "BPH" designations shown below are those used in the respective PDB File entries.

Figure S5: Binding motif of bisphosphonate-GGPP complex structures. A) **10** (BPH-28, PDB File: 2z50) and B) **9** (BPH-742, PDB File: 2z7I) bound to GGPPS superimposed on FsPP + IPP (PDB File: 2e8t) and GGPP (PDB File: 2z4v) complex structures

Figure S6: Electron densities (green contoured at 1σ, red at 3σ) for GGPP, **4**, **5**, **9**, **10**, **11**, **12**, **13** bound to GGPPS. The "BPH" designations shown below are those used in the respective PDB File entries.

Names	GGPPS-10	GGPPS-Mg-9							
PDB number	2z50	2z7I							
Data Collection									
Space group	P2,2,2,	P2 ₁ 2 ₁ 2 ₁							
Resolution $(\text{\AA})^{a}$	30-2.01	30-2.10							
	(2.08-2.01)	(2.18-2.10)							
Unit Cell Dimensions									
a (Å)	47.13	48.11							
b (Å)	119.2	116.34							
с (Å)	129.71	129.43							
No. of reflections									
Observed	204046 (16667)	202498 (35537)							
Unique	49435 (4762)	81045 (7897)							
Completeness (%)	99.2 (97.0)	99.5 (98.4)							
R_{merge} (%)	3.2 (34.6)	5.1 (23.9)							
I/s(I)	39.1 (4.4)	29.9(6.5)							
	Refinement								
No. of reflections	47496 (4286)	41743 (3708)							
$R_{ m work}$ (%)	19.0 (24.1)	18.4 (25.0)							
$R_{\rm free}$ (%)	23.9 (28.2)	24.4 (31.3)							
Geometry deviations									
Bond lengths (Å)	0.023	0.017							
Bond angles (°)	1.7	1.7							
No. of all protein atoms	4593	5159							
Mean B-values (Ų)	37.9	36.2							
No. of all cofactor atoms	32	52							
Mean B-values (Ų)	60	38.8							
No. of water molecules	637	471							
Mean B-values (Ų)	58.8	47.5							
Ramachandran plot (%)									
Most favored	96.3	96							
Additionally allowed	3.6	4							
Generously allowed	0.2	0							

Table S1. Data Collection and Refinement Statistics for GGPP-Bisphosphonate Crystals.

^a Values in the parenthesis are the highest resolution shells.

	Target Receptor									
	BPH-23 (12)	BPH-629 (8)	BPH-749 (5)	BPH-742 (9)	BPH-28 (10)					
PDB File	2z4z	2e93	2z4w	2z7i	2z50 ^(f)					
Number of Mg ²⁺ Ions	3	2	2	1	0					
Accuracy ^(a)	60%	100%	70%	70%	0					
\mathbf{r}^2	0.7	0.7	0.7	0.7	n/a					
q^{2} (b)	0.6	0.6	0.7	0.6	n/a					
Outliers ^(c)	1	0	2	1	n/a					
Randomization r ^{2 (d)}	0.05	0.05	0.05	0.05	n/a					
Regression Coefficients (e)										
van der Waals	-2.10E-02	-2.82E-02	-3.40E-02	-2.12E-02	n/a					
Cavity	-1.43E-01	-1.89E-01	-2.32E-01	-1.43E-01	n/a					
SlogP	3.07E-01	1.70E-01	2.10E-01	3.07E-01	n/a					

Table S2: Comparison of Liaison Results for Protein Target Receptors Investigated

^(a) Percentage of docked poses residing in the crystallographically observed binding pocket. Computed based on a total of 12 GGPPS-bisphosphonate structures (Table S3).

^(b) Cross-validated r², representing a metric of the predictivity of the model.

^(c) Number of statistical outliers identified by MLR regression module in Strike (Schrödinger, LLC)

^(d) Experiment vs. predicted activity correlation upon 100 iterations of data randomization; low values here indicate a good correlation is unlikely to be obtained by chance.

^(e) Regression coefficients fit to Liaison (Schrödinger, LLC) parameters. These values serve as the basis for the reparameterized scoring function.

^(f)Sufficient structure convergence not obtained to proceed with Liaison calculations.

	BPH- 252	BPH- 749	BPH- 675	BPH- 364	BPH- 629	BPH- 742	BPH- 28	BPH- 798
pose #	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(12)
1	1.36	1.06	2.49	1.41	0.65	1.32	1.12	2.45
2	1.01	0.88	2.54	1.64	0.60	1.62	1.12	0.98
3	1.16	0.90	2.39	1.62	0.64	1.38	1.19	1.26
4	1.31	0.99			1.26	1.20	1.26	0.98
5	1.51	1.42			0.98	0.96	1.11	1.13
avg	1.27	1.05	2.47	1.56	0.83	1.29	1.16	1.36
	BPH-	BPH-	BPH-	BPH-				
	806	715	91	261				

Table S3: X-ray/Glide docking RMSD calculations using BPH-629 (8) grid (all values shown in Å).

pose # 1 2 3 4	BPH- 806 (13) 1.54 1.79 1.41 1.24	BPH- 715 (15) 0.85 0.85 0.99 1.11 1.20	BPH- 91 (55) 1.07 1.01	BPH- 261 (57) 1.15 0.79 0.82 1.09 1.25
5		1.29		1.35
avg	1.49	1.02	1.04	1.04

Table S4: Liaison Scoring Function Parameterization Output

Strike v1.6.308 ### ### Schrodinger, LLC - 2006 ### ### ### Job started: Wed Dec 5 09:54:34 2007 Job ID: vengeance-0-4756c9b8 SCHRODINGER: /usr/local/schrodinger MMSHARE_EXEC: /usr/local/schrodinger/mmshare-v16207/bin/IRIX-mips4 MAESTRO_EXEC: /usr/local/schrodinger/maestro-v80308/bin/IRIX-mips4 Commands input for task number 1 _____ runMode=train dataFile=strike_buildqsar_training.csv csvFile=strike_buildqsar_training-out.csv normalize=range delim=, activityLabel=GGPPS pIC50 model=MLRO numOptDescript=3 numOptModel=10 columnHeader=1 autoScale=1 Activity column(5) identified is labeled:: GGPPS pIC50 Descriptors employed (alias <== input descriptor title): _____ Liai.vdw> <== Liaison <Uvdw> Liai.cav> <== Liaison <Ucav> Liai.ele> <== Liaison <Uele> SlogP <== SlogP <== GGPPS pIC50 GGPP.IC50 Molecules employed: 1:61 Correlation Matrix for input variables: Liai.vdw> Liai.cav> Liai.ele> SlogP 1.0000 Liai.vdw> Liai.cav> -0.0517 1.0000 0.2990 Liai.ele> 0.2246 1.0000 -0.7375 1.0000 SlogP -0.2389 -0.4016 For MLR model created using # rows: 61 # columns 3 MLR Regression Statistics: S.D. R-Squared F(3.0,57.0) P 0.5683 0.6499 35.3 5.057e-13

.....

MLR Regression Coefficients and T-Values:

Variable	Coefficient	Std. Err.	Т
Intercept Liaison <uvdw> Liaison <ucav> SlogP</ucav></uvdw>	6.7722e+00 -2.8258e-02 -1.8500e-01 1.4626e-01	2.3680e-01 7.8063e-03 6.8980e-02 5.1754e-02	28.5992 3.6198 2.6819 2.8260
Cross Validatio	n leave-3-out Re	esults Over 10	Cycles
q^2	RMS		
0.5974	0.5906		
Randomization o	ver 610 Cycles		
r^2	S.D. p)	
0.0506	0.9358 0.0	000e+00	
Predicted Resul	ts: (Full Result	s shown in Tab	le S1, Main Text)
RMS 0.54 Q^2 0.64	94 99		
Job completed s	uccessfully		

Sep compressed buccebbre	~
User time (sec):	0.7400
System time (sec):	0.0100
Real time (sec):	0.7600

	Predicted $pIC_{50}(M)$									
Compound	IC_{50} (μM)	$pIC_{50}(M)$	Training	1	2	3	4	5	Predicted	Residual
9	0.10	7.0	6.5	6.4	6.6	6.1	6.1	6.2	6.3	0.7
14	0.28	6.6	6.3	5.5	6.3	6.3	6.7	6.8	5.5	1.0
15	0.28	6.6	6.0	6.1	6.0	5.9	5.9	5.7	5.7	0.8
16	0.35	6.5	6.2	6.0	6.2	5.9	5.8	5.9	5.8	0.7
17	0.40	6.4	6.0	5.9	6.0	5.9	5.8	5.8	6.0	0.4
18	0.51	6.3	6.3	6.3	6.3	5.8	6.2	6.1	5.8	0.5
19	0.59	6.2	6.0	6.2	6.1	5.9	6.0	5.9	6.0	0.2
20	0.66	6.2	5.6	5.6	5.7	5.5	5.5	5.5	5.6	0.5
4	0.69	6.2	5.5	5.6	5.6	5.5	5.4	5.4	5.5	0.7
21	0.72	6.1	6.0	6.1	5.6	6.0	5.8	6.0	5.6	0.5
13	0.76	6.1	6.4	6.3	6.4	6.5	6.5	6.2	6.2	-0.1
22	0.89	6.1	6.0	5.8	6.1	5.7	5.5	5.7	5.5	0.5
23	0.89	6.1	5.6	5.3	5.5	5.7	5.7	5.5	5.3	0.8
5	0.98	6.0	6.2	6.1	6.2	6.0	6.1	6.1	6.1	-0.1
24	1.15	5.9	5.7	5.6	5.7	5.6	5.6	5.5	5.5	0.5
25	1.23	5.9	6.3	6.1	6.3	6.0	5.9	6.0	6.0	-0.1
26	1.26	5.9	6.0	5.9	6.0	5.9	5.8	5.8	6.0	-0.1
27	1.38	5.9	5.9	5.8	5.9	5.7	5.5	5.6	5.5	0.3
28	1.48	5.8	6.3	6.1	6.2	6.0	5.9	6.0	6.0	-0.2
29	1.74	5.8	5.7	5.5	5.7	5.7	5.5	5.5	5.5	0.3
12	1.86	5.7	6.0	5.6	6.1	6.2	6.0	6.1	6.0	-0.3
30	2.14	5.7	5.6	5.6	5.6	5.2	5.3	5.3	5.2	0.5
31	2.14	5.7	5.8	5.8	5.9	5.8	5.7	5.8	5.8	-0.1
32	2.34	5.6	5.7	5.4	5.7	6.0	5.9	5.9	5.9	-0.3
33	2.51	5.6	6.1	5.9	6.4	6.4	6.5	6.4	6.4	-0.8
34	2.51	5.6	5.6	5.8	5.7	5.5	5.5	5.3	5.5	0.1
35	2.51	5.6	5.2	5.1	5.2	5.2	5.2	5.2	5.1	0.5
6	2.69	5.6	5.4	6.8	5.4	5.8	5.9	6.1	6.8	-1.3
11	2.69	5.6	5.9	5.7	5.8	5.9	5.9	5.7	5.7	-0.1
36	3.02	5.5	5.8	5.9	5.9	5.7	5.9	5.7	5.9	-0.4
37	3.24	5.5	5.8	5.6	5.9	5.6	5.5	5.6	5.9	-0.4
8	3.98	5.4	5.4	5.4	4.9	5.5	5.4	5.5	4.9	0.5
38	4.07	5.4	5.5	5.4	5.6	5.6	5.6	5.6	5.6	-0.2
39	4.17	5.4	5.5	5.4	5.4	5.4	5.5	5.3	5.4	0.0

 Table S5: CoMSIA Feature Alignment Full Test Set Results for GGPPS Inhibition

40	4.57	5.3	5.0	4.9	5.2	5.3	5.3	5.1	5.2	0.2
41	4.68	5.3	5.5	5.7	5.5	5.5	5.6	5.5	5.7	-0.3
42	6.76	5.2	5.4	5.1	5.4	5.4	5.2	5.3	5.2	-0.1
43	8.71	5.1	4.6	4.6	4.6	4.5	4.6	4.7	4.5	0.6
44	8.91	5.1	5.5	5.4	5.5	5.5	5.3	5.3	5.5	-0.5
45	10.00	5.0	4.8	4.6	4.8	4.8	4.7	4.8	4.8	0.2
7	11.22	5.0	5.3	5.2	5.3	5.5	5.4	5.4	5.5	-0.5
10	11.22	5.0	4.9	4.7	4.9	4.9	5.0	5.0	5.0	0.0
46	14.13	4.9	4.8	4.6	4.8	4.9	4.8	4.8	4.6	0.2
47	27.54	4.6	4.9	4.7	4.9	4.9	4.9	5.0	4.9	-0.3
48	53.70	4.3	4.3	4.2	4.3	4.2	4.2	4.2	4.2	0.1
49	66.07	4.2	4.3	4.3	4.2	4.2	4.3	4.4	4.4	-0.2
50	66.07	4.2	4.0	4.0	4.1	4.1	4.1	4.1	4.1	0.0
51	74.13	4.1	4.3	4.1	4.3	4.8	3.8	3.8	4.8	-0.6
52	79.43	4.1	6.3	5.9	6.3	5.8	5.7	5.8	6.3	-2.2
53	83.18	4.1	4.7	4.4	4.6	4.7	5.0	4.7	5.0	-0.9
54	93.33	4.0	4.1	5.1	4.1	4.3	4.4	4.3	5.1	-1.1
55	100.00	4.0	3.9	3.9	3.9	3.9	3.9	3.8	3.9	0.1
56	107.15	4.0	4.1	4.1	4.1	4.1	4.1	4.2	4.2	-0.2
57	107.15	4.0	3.9	3.9	3.9	4.4	4.3	4.2	4.4	-0.4
58	117.49	3.9	4.1	4.0	4.3	4.1	4.2	4.2	4.3	-0.4
59	141.25	3.9	3.6	3.8	3.7	3.7	3.9	3.8	3.8	0.1
60	169.82	3.8	3.9	3.8	4.0	4.1	4.0	4.0	4.1	-0.3
62	181.97	3.7	3.8	4.1	3.8	3.6	3.4	3.4	3.7	0.1
63	316.23	3.5	3.7	3.7	3.6	3.9	3.9	4.0	3.8	-0.3
64	331.13	3.5	3.3	4.6	3.3	3.4	3.7	3.8	4.6	-1.1
65	436.52	3.4	3.4	3.4	3.3	3.3	3.4	3.5	3.4	0.0
		q2	0.59	0.68	0.72	0.54	0.56	0.52		
		r2	0.79	0.85	0.92	0.81	0.80	0.79		
		Ν	4	4	4	3	3	3		
		F	73	65	139	67	63	59		
		n	61	51	51	51	51	51		
		%Steric	0.19	0.22	0.19	0.18	0.21	0.19		
		%Hydrophobic	0.35	0.36	0.36	0.38	0.38	0.38		
		%Donor	0.21	0.18	0.20	0.24	0.23	0.23		
		%Acceptor	0.25	0.24	0.26	0.20	0.18	0.20		

N = number of components; n = Number of training set compounds

Table S6: CoMSIA Feature Alignment Results

```
Regression Equation(s)
Use COMFA FIELD RETRIEVE/LIST/GRAPH or EVA RETRIEVE/LIST/GRAPH
COMFA/EVA coefficients.
All columns are COMFA.
Relative Contributions
 #
                          Norm.Coeff. Fraction
 -
                           - - - - - - - - - - - -
                                       - - - - - - - -
 1 COMSIA ST (2280 vars)
                                 0.556
                                            0.205
 2 COMSIA_HY (2280 vars)
                                 1.030
                                            0.379
                                            0.222
 3 COMSIA_DO (2280 vars)
                                0.602
 4 COMSIA AC (2280 vars)
                                 0.526
                                            0.194
Input Selections: PLS Analysis
  Minimum Sigma to use Column: 0.0000
                                           Missing Values: COLUMN MEAN DEFAULT
  Row Weighting: SAME_WEIGHTS_FOR_ALL
  Neither BOOTSTRAPPED nor CROSSVALIDATED
  COMPONENTS: 3
  Scaling: COMFA_STANDARD
                               Intercept forced through 0.0: NO
  NIPALS: (Max Iter = 100; EPS = 0.000100)
  Target (Y) Variable(s):
   1: GGPPS_pIC50
  Explanatory (X) Variable(s): (Actual terms: 9120 requested, 8785 used)
   2: COMSIA_ST
                              4: COMSIA HY
                                                         5: COMSIA DO
   6: COMSIA_AC
  Rows in Analysis: (61 rows)
                              2: 2
                                                         3: 210
   1: 1
   4: 23
                              5: 24
                                                         6: 252
   7: 261
                                                         9: 28
                              8: 278
  10: 30
                             11: 300
                                                       12: 364
  13: 470
                             14: 472
                                                       15: 474
  16: 483
                             17: 5
                                                       18: 527
  19: 536
                             20: 579
                                                       21: 598
  22: 601
                             23: 604
                                                        24: 608
  25: 628
                             26: 629
                                                        27: 637
  28: 638
                             29: 653
                                                       30: 675
  31: 676
                             32: 678
                                                       33: 679
  34: 683
                             35: 684
                                                       36: 685
                             38: 693
                                                       39: 694
  37: 688
  40: 715
                             41: 716
                                                       42: 717
  43: 722
                             44: 727
                                                       45: 728
                                                       48: 742
  46: 733
                             47: 734
  49: 745
52: 798
                             50: 749
53: 799
                                                       51: 754
                                                       54: 804
  55: 805
                             56: 806
                                                       57: 811
  58: 812
                                                       60: 816
                             59: 815
  61: 91
Summary output
Standard Error of Estimate
                                       0.437
                                    0.793
R squared
```

F values (n1= 3, n2=57) 72.964 Prob.of R2=0 (n1= 3, n2=57) 0.000

Table S7: CoMSIA Receptor-Guided Alignment Results

Prob.of R2=0 (n1= 5, n2=55)

```
Regression Equation(s)
Use COMFA FIELD RETRIEVE/LIST/GRAPH or EVA RETRIEVE/LIST/GRAPH
COMFA/EVA coefficients.
All columns are COMFA.
Relative Contributions
#
                                          Norm.Coeff. Fraction
                                           - - - - - - - -
 1 COMSIA ST (2028 vars)
                                                 0.924
                                                           0.217
 2 COMSIA_HY (2028 vars)
                                                 1.531
                                                           0.360
 3 COMSIA DO (2028 vars)
                                                 0.965
                                                           0.227
 4 COMSIA_AC (2028 vars)
                                                 0.833
                                                           0.196
Input Selections: PLS Analysis
 Minimum Sigma to use Column: 0.0000
                                         Missing Values: COLUMN MEAN DEFAULT
 Row Weighting: SAME_WEIGHTS_FOR_ALL
 Neither BOOTSTRAPPED nor CROSSVALIDATED
  COMPONENTS: 5
  Scaling: COMFA_STANDARD
                              Intercept forced through 0.0: NO
 NIPALS: (Max Iter = 100; EPS = 0.000100)
 Target (Y) Variable(s):
  1: HumanGGPPS
  Explanatory (X) Variable(s): (Actual terms: 10140 requested, 8111 used)
   2: COMSIA_ST
                             4: COMSIA_HY
                                                       5: COMSIA DO
   6: COMSIA_AC
 Rows in Analysis: (61 rows)
   1: 210
                             2: 23
                                                       3: 261
   4: 278
                             5: 30
                                                       6: 300
   7: 364
                             8: 470
                                                       9: 472
  10: 474
                            11: 483
                                                      12: 527
  13: 536
                            14: 601
                                                      15: 604
  16: 608
                            17: 628
                                                      18: 629
  19: 637
                            20: 638
                                                      21: 653
  22: 675
                            23: 676
                                                      24: 678
  25: 679
                            26: 683
                                                      27: 684
  28: 685
                            29: 688
                                                      30: 693
                           32: 715
35: 722
38: 733
                                                      33: 716
36: 727
  31: 694
  34: 717
  37: 728
                                                      39: 734
                                                      42: 749
  40: 742
                           41: 745
  43: 754
                           44: 798
                                                      45: 799
  46: 805
                           47: 806
                                                      48: 811
  49: 815
                           50: 816
                                                      51: 91
  52: 252
                           53: 28
                                                      54: 579
  55: 812
                           56: 598
                                                      57: 2
  58: 804
                            59: 24
                                                      60: 1
  61: 5
Summary output
Standard Error of Estimate
                                      0.244
                                   0.938
R squared
F values
             ( n1= 5, n2=55 )
                                 165.558
```

0.000

Compound	Required %C	Found % C	Required %H	Found %H	Required %N	Found %N
6	45.8	45.74	3.2	3.29	2.23	2.2
9	41.56	41.31	7.63	7.91	0	0
12	45.9	45.91	7.36	7.28	0	0
13	50.74	50.87	6.29	6.12	2.57	2.7
14	32.78	32.67	5.2	5.59	2.12	2.02
15	47.22	47.58	7.46	7.35	3.24	3.38
16	33.72	34.15	6.23	6.58	2.62	2.63
17	49.04	49.33	7.75	7.65	3.36	3.25
18	37.65	37.48	5.76	5.66	2.58	2.6
19	46.06	45.87	6.87	6.88	0	0
20	45.86	45.71	7.31	7.09	3.57	3.64
22	39.78	39.45	8.01	8.12	0	0
24	46.74	46.37	7.5	7.1	3.21	3.43
26	46.84	46.78	7.75	7.55	6.43	6.39
27	39.4	39.79	5.95	6.32	3.06	3.09
29	46.88	46.88	6.29	5.98	3.64	3.65
30	43.08	43.21	6.71	6.48	3.59	3.64
32	40.06	40.12	6.47	6.67	0	0
34	39.3	39.32	6.16	6.15	6.11	6.08
35	49.16	49.09	5.58	5.53	3.37	3.46
36	49.56	49.5	7.88	7.75	3.04	3.15
38	47.73	47.26	3.81	3.69	0	0
40	46.26	46.33	7.54	7.46	3.17	3.18
41	48.61	48.57	7.94	7.81	2.98	2.93
42	40.85	40.73	6.07	6.09	3.66	3.83
44	49.52	49.43	6.84	6.68	3.4	3.45
51	13.01	13.21	3.43	3.03	13.01	13.04
54	40.1	40.43	5.77	6.02	3.34	3.51

Table S8: Microanalysis Data for New Compounds