Submitted to: J. Am. Chem. Soc.

Supporting Information

Solid-State NMR and Quantum Chemical Investigations of $^{13}C^{\alpha}$ Shielding Tensor Magnitudes and Orientations in Peptides: Determining ϕ and ψ Torsion Angles

Sungsool Wi $^{\$}$, Haihong Sun † , Eric Oldfield ‡,†,* and Mei Hong $^{\$\ast}$

[§]Department of Chemistry, Iowa State University, Gilman Hall 0108, Ames, IA 50011

[†]Department of Biophysics, University of Illinois at Urbana-Champaign,

600 South Mathews Avenue, Urbana, IL 61801

[‡]Department of Chemistry, University of Illinois at Urbana-Champaign,

600 South Mathews Avenue, Urbana, IL 61801

11/22/04

	M in f-MLF		L in f-MLF		A in GAF		F in GAF		A in GAL		L in GAL		V in GGV		V in NAV	
	Exp	Cal	Exp	Cal	Exp	Cal	Exp	Cal								
φ(°)	-146		-89.5		-71.6		-78		-65.7		-72.2		-81.5		-137	
ψ(°)	159		-39.5		-33.4		-43		-40		-45.3		129		178	
$\chi_1(^\circ)$	-85		-58.7			-78				-68.5		180		-60		
$\Omega(ppm)$	41± 3	31.1	42.5 ± 2.0	34.4	34.4 ± 1.9	32.7	38.9 ± 3.0	29.0	36.0 ± 1.0	31.3	39.4 ± 3.0	33.4	25.0 ± 2.5	22.6	46.6 ± 3.1	50.2
η	0.85 ± 0.05	0.57	0.40 ± 0.05	0.38	0.7 ± 0.1	0.69	0.7 ± 0.1	0.74	0.89 ± 0.05	0.89	0.53 ± 0.1	0.94	0.33 ± 0.1	0.23	0.68 ± 0.1	0.60
$\delta_{iso}(ppm)$	51.2		56.7		53.5		61.5		52.0		57.2		65.3		57.3	
δ_{11} - $\delta_{iso}(ppm)$	21.3 ± 1.0	17.4	17.5 ± 1.3	14.1	15.8 ± 1.4	15.0	17.9 ± 2.0	13.5	17.5 ± 1.0	15.2	17.1 ± 2.0	16.4	10.0 ± 1.5	11.8	25.3 ± 1.0	27.8
δ_{22} - $\delta_{iso}(ppm)$	-1.6 ± 0.7	-3.6	7.5 ± 0.8	6.3	2.8 ± 0.8	2.8	3.2 ± 1.0	2.0	1.0 ± 0.6	0.8	5.2 ± 1.3	0.4	5.0 ± 1.1	0.9	-4.0 ± 1.5	-5.5
δ_{33} - $\delta_{iso}(ppm)$	-19.7 ± 1.7	-13.7	-25.0 ± 1.0	-20.3	-18.6 ± 0.5	-17.7	-21.0 ± 1.0	-15.5	-18.5 ± 1.0	-16.1	-22.3 ± 1.0	-17	-15.0 ± 1.0	-12.7	-21.3 ± 2.1	-22.3
β ₁₁ (°)	70 ± 5	66	47 ± 20	88	117 ± 15	100	51 ± 15	75	131 ± 15	114	54 ± 20	72	59 ± 25	57	67 ± 20	66
β ₂₂ (°)	104 ± 5	135	135 ± 20	147	33 ± 15	52	41 ± 15	19	50 ± 15	53	135 ± 20	138	32 ± 25	32	141 ± 25	137
β ₃₃ (°)	25± 5	55	103 ± 10	123	108 ± 10	135	80 ± 10	80	67 ± 10	47	67 ± 10	53	99 ± 10	93	60 ± 25	57

Table S1. Comparison of experimental ${}^{13}C^{\alpha}$ shielding tensors with *ab initio* calculations made using the exact sidechain torsion angles from X-ray or *de novo* NMR structures of the peptides.

Figure S1. Wi et al.

Figure S1. Determination of Phe C^{α} CSA in GAF. (a) Experimental (top in bold) and best-fit (bottom) spectra. (b) 2D RMSD plot as a function of δ and η . (c) 2D RMSD plot as a function of (α , β) angles that describe the orientation of the shielding tensor relative to the C-N bond. The RMSD values are normalized by the global minimum RMSD value. (d) Simulated ¹³C-¹⁴N modulated ¹³C^{α} CSA spectra for (α , β) angles at 20° increments. The near best-fit spectrum is in bold.

Figure S2. Wi et al.

Figure S2. Ala ¹³C^{α} CSA spectra. (a) Experimental (bold), best fit, and trial simulated spectra of ¹³C^{α} in GAL. (b) Same as (a) but for Ala in GAF. (c) 2D RMSD plot of Ala in GAL as a function of (α , β). (d) 2D RMSD plot of Ala in GAF as a function of (α , β). The angular uncertainties for the best fits are indicated by bold contours.

Figure S3. Comparisons between experimental shift tensor with calculated values using sidechain geometries taken from the X-ray or *de novo* NMR structures of the peptides. (a) Tensor magnitude: slope = 0.87, R² = 0.98, RMSD = 2.3 ppm. (b) Tensor orientation: slope = 0.89, R² = 0.72, RMSD = 20° .