Pyridine Inhibitor Binding to the 4Fe-4S Protein A. aeolicus IspH (LytB):

A HYSCORE Investigation

Supporting Information

Weixue Wang, Jikun Li, Ke Wang, Tatyana I. Smirnova, and Eric Oldfield

Full citation for reference 21:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

Supplementary Methods

Materials. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were used as provided. BL-21(DE3) competent cells were purchased from Stratagene (La Jolla, CA). Syntheses of **7**, **8**, **9**, **10**, **11** were reported previously.¹ The *A. aeolicus* plasmid was provided by Hassan Jomaa and Jochen Wiesner.

A. aeolicus IspH Protein Production and Purification. Reconstituted *A. aeolicus* IspH was prepared as reported previously.² Anaerobically purified *A. aeolicus* IspH was prepared using a Coy Vinyl Anaerobic Chamber (Coy Laboratories, Grass Lake, MI) with an oxygen level < 2 ppm, and all buffers were degassed on a Schlenk line. Cell pellets were re-suspended in 100 mM Tris-HCl, 150 mM NaCl buffer (pH 8.0). Lysozyme, Benzonase nuclease (EMD Chemicals, San Diego, CA) and phenylmethanesulfonyl fluoride were added, and stirred for 1.5 hour at 10 °C followed by sonication (Fisher Scientific Sonic Dismembrator, Model 500) with 4 pulses, each 7 sec duration and 35% power. The cell lysate was then centrifuged at 11,000 rpm at 10 °C for 30 min. The supernatant was purified by using His-tag affinity chromatography. Fractions having a brown color were collected and desalted in pH 8.0 buffer containing 100 mM Tris-HCl and 150 mM NaCl. *A. aeolicus* IspH was used as purified without reconstitution.

To prepare $[u^{-15}N]$ -labeled *A. aeolicus* IspH, *E. coli* BL-21 (DE3) cells harboring an *A. aeolicus* IspH plasmid were grown in M9 minimal media (12.8 g Na₂HPO₄-7H₂O, 3 g KH₂PO₄, and 0.5 g NaCl in 1000 mL distilled H₂O, supplemented with 2 mL 1M MgSO₄, 100 µL 1M CaCl₂, 4 g glucose, 1 g ¹⁵NH₄Cl and 5 mL 100X MEM vitamin solution (Sigma, St Louis, MO)). When the OD₆₀₀ reached 0.6, 400 µg/L anhydrotetracycline was added to induce the overexpression of *A. aeolicus* IspH. Cells were then allowed to grow at 28 °C for 20 hours, then harvested by centrifugation and stored in -80 °C until purification. The ¹⁵N-labeled *A. aeolicus* IspH protein was purified and reconstituted according to published procedures.²

HYSCORE Sample Preparation. All samples were prepared inside a Coy Vinyl Anaerobic Chamber with an oxygen level < 2 ppm. IspH was typically 1.0-2.0 mM in pH 8.0 Tris-HCl buffer (50 mM Tris-HCl, 150 mM NaCl), and glycerol was added to 40% (v/v). 20 equivalents of sodium dithionite were added as a reducing agent, and ligands were added as follows: 5, 50 eq.; 6, 50 eq.; 7, 10 eq.; 8, 50 eq.; 9, 30 eq.; 10, 30 eq.; 11, 10 eq.). A 80 μ L samples were then transferred into EPR tubes (706-PQ-9.50, Wilmad Labglass, Vineland, NJ), then frozen in liquid nitrogen after a 5-minute incubation with dithionite and ligands.

ENDOR/HYSCORE Spectroscopy. HYSCORE spectra were obtained on a Bruker ElexSys E-580-10 FT-EPR X-band EPR spectrometer using an Oxford Instruments CF935 cryostat. HYSCORE used a four-pulse sequence $\pi/2_{mw} - \tau - \pi/2_{mw} - t_1 - \pi_{mw} - t_2 - \pi/2_{mw} - \text{echo}; \pi/2_{mw} = 16$ ns and $\pi_{mw} = 32$ ns, 256 points for both t_1 and t_2 , each at 16 ns steps. Time-domain data were baseline corrected using a 3rd order polynomial, then Hamming windowed, followed by zero-filling, and 2D-Fourier transformation. HYSCORE spectra were simulated using the EasySpin program package.³

Quantum Mechanical Calculations. All QM calculations were performed with Gaussian 09 software.⁴ For all systems, geometry optimization was carried out using the BPW91 functional, a Wachters+ $f^{5, 6}$ basis set for first-row transition metals, $6-311+G^{*7}$ for other atoms. The optimized structures were then used to calculate the ¹⁴N nuclear quadrupole coupling constants using BPW91^{8, 9} or B3LYP^{10, 11} functionals, and the aforementioned Wachters, $6-311+G^*$ or TZVP¹² basis sets. There was little difference between the different calculational results. The QM calculations give the electric field gradient (*eq*) in atomic units; a conversion factor of *eQ/h* = 4.8027 MHz/a.u. (Q = 0.02044 barn¹³) for ¹⁴N was used to calculate the e^2qQ/h value, in MHz. Atomic coordinates after geometric optimization of all model compounds are given in Table S2.

Figure S1. Continuous-wave EPR of ligand-free IspH and IspH + 7 (a), and HYSCORE spectra of IspH + pyridine ligands. In (a), arrows indicate the magnetic field positions for collecting field-dependent HYSCORE of IspH + 7. HYSCORE spectra were taken at g_2 ; $\tau = 136$ ns.

Figure S2. HYSCORE spectrum of anaerobically purified *A. aeolicus* IspH + **7**. Microwave frequency = 9.68 GHz; magnetic field = $360 \text{ mT} (g_2=1.921)$; $\tau = 136 \text{ ns}$.

Figure S3. HYSCORE spectra of *A. aeolicus* IspH + **7** at three different magnetic field strengths and their computer simulations. (a), 340 mT; (b), 360 mT; (c), 372 mT. (d), simulation of (a); (e), simulation of (b); (f), simulation of (c). Microwave frequency = 9.66 GHz; $\tau = 136ns$. Simulation parameters are: $A_{ii}(^{14}N) = [6.2, 7.6, 8.4]$ MHz, $\alpha = 10^\circ$, $\beta = 30^\circ$, $\gamma = 10^\circ$ for the hyperfine interaction and $e^2 qQ/h = 3.0$ MHz, $\eta = 0.2$, $\alpha = 45^\circ$, $\beta = 60^\circ$, $\gamma = 35^\circ$ for the quadrupole interaction.

Figure S4. Correlation between experimental and computed $e^2 q Q/h$ values for model compounds, using four different basis set/functional combinations.

Molecule	Experime	ent	BPW91/		BPW91/ Washtara		B3LYP/		B3LYP/	
			12.41		wachters		12.1		wachters	
	e ² qQ/h	η	e ² qQ/h	η	$e^2 q Q/h$	η	e ² qQ/h	η	$e^2 q Q/h$	η
Pyridine	4.584 ^[a]	0.396 ^[a]	5.006	0.369	4.963	0.326	5.236	0.364	5.285	0.410
Pyridinium (HSO4 ⁻)	1.197 ^[a]	0.426 ^[a]	1.170	0.211	1.337	0.109	1.133	0.206	1.321	0.098
Imidazole(N)	4.032 ^[b]	0.120 ^[b]	4.124	0.050	4.051	0.002	4.406	0.108	4.322	0.055
Imidazole(NH)	2.537 ^[b]	0.178 ^[b]	2.812	0.177	2.942	0.218	2.855	0.165	2.998	0.209
1,2,4-Triazole(N1H)	2.95 ^[b]	0.553 ^[b]	3.199	0.462	3.318	0.417	3.249	0.477	3.384	0.425
1,2,4-Triazole(N2)	4.41 ^[b]	0.728 ^[b]	4.541	0.74	4.449	0.794	4.803	0.683	4.700	0.739
1,2,4-Triazole(N4)	4.01 ^[b]	$0.102^{[b]}$	4.070	0.052	4.004	0.001	4.305	0.087	4.231	0.033
Pyridine oxide	1.227 ^[a]	$0.426^{[a]}$	1.193	0.159	1.255	0.004	0.927	0.826	0.998	0.535
Pyridine sulfur trioxide	1.52 ^[c]	0.15 ^[c]	1.986	0.078	1.966	0.047	2.055	0.138	2.037	0.002
N-methylpyridinium	0.545 ^[a]	0.07 ^[a]	1.170	0.211	1.337	0.109	1.133	0.206	1.321	0.098
Fe(CO) ₄ Py	2.402 ^[a]	0.319 ^[a]	2.379	0.232	2.405	0.139	2.918	0.299	2.944	0.212
Cr(CO) ₄ (2,2'-bipyr)	3.124 ^[a]	0.237 ^[a]	3.011	0.094	3.041	0.026	3.502	0.203	3.538	0.137
mitoNEET cluster His	2.47 ^[d]	0.38 ^[d]	2.965	0.223	2.908	0.299	3.385	0.104	3.347	0.188
Rieske cluster His 1	2.6 ^[e]	0.346 ^[e]	2.764	0.315	2.795	0.355	3.176	0.162	3.201	0.233
Rieske cluster His 2	2.3 ^[e]	0.391 ^[e]	2.722	0.272	2.757	0.375	3.127	0.186	3.154	0.254
IspH + 7	3.0 ^[f]	0.2 ^[f]	2.268	0.530	2.363	0.534	2.571	0.160	2.877	0.331

Table S1. Calculated ¹⁴N nuclear quadrupole couplings of 16 nitrogen atoms in 13 model compounds using four different basis set/functional combinations.

^[a]. Reference 14. ^[b]. Reference 15. ^[c]. Reference 16. ^[d]. Reference 17. ^[e]. Reference 18. ^[f]. This work.

Table S2.	QM geometry optimized coordinates (in Å) of 13 model compounds obtained by using a BPW9
funtional and	a Wachters basis set for Fe.

$[(Fe_4S_4)(SMe_4)_3(pyr)]^2$, model of IspH + 7						
Atom	Х	У	Z			
Fe	0.697405	-1.519141	1.748632			
Fe	-0.015702	-0.182461	3.959295			
Fe	-1.538219	-0.202396	1.769967			
Fe	0.774522	1.161600	1.808083			
S	1.573820	-3.459266	0.955702			
S	-3.555739	-0.519003	0.888175			
S	2.082533	-0.310311	3.006850			
S	-1.153356	1.593588	3.016555			
S	-0.033256	-0.112543	0.112040			
S	-1.079980	-1.964801	3.091548			
S	1.988536	3.051197	1.323568			
С	-3.682411	0.590582	-0.587867			
Н	-2.918976	0.327846	-1.338466			
Н	-4.685797	0.473691	-1.039377			
Н	-3.543544	1.647250	-0.304165			
С	0.762655	4.055774	0.373424			
Н	1.197245	5.050477	0.162566			
Н	0.508733	3.571951	-0.584845			
Н	-0.166359	4.191626	0.951340			

С	0.118556	-4.330419	0.229090
Н	-0.661316	-4.489484	0.991553
Н	-0.319410	-3.745038	-0.595898
Н	0.445869	-5.310914	-0.163435
N	0.087356	0.019540	5.899781
С	0.589080	1.391106	7.852330
С	0.489838	1.206626	6.482796
С	-0.221001	-1.001194	6.777851
С	-0.142196	-0.877026	8.155797
С	0.272230	0.340334	8.742391
Н	0.917819	2.368101	8.225830
Н	0.729250	2.008708	5.779484
Н	-0.540513	-1.934359	6.305643
Н	-0.407239	-1.741952	8.775495
Н	0.345487	0.462052	9.827606
Fe(CO) ₄ (pyr)			
Atom	Х	У	Z
Fe	0.026096	0.001069	0.037612
С	1.825469	-0.041886	-0.118884
0	2.975319	-0.069256	-0.299470
С	-0.786788	1.619067	0.079081
0	-1.297389	2.663648	0.077367
С	-0.863250	-1.576273	0.075799
0	-1.423232	-2.595231	0.071938
N	0.042289	-0.001349	2.107408
С	-0.097096	0.005831	-1.727498
0	-0.184312	0.009122	-2.884101
С	-1.140918	0.025803	2.772130
С	-1.230625	0.026620	4.162406
С	-0.059558	-0.001559	4.923477
С	1.162097	-0.029585	4.247153
С	1.173315	-0.028555	2.853207
Н	-2.033646	0.047359	2.145342
Н	-2.216875	0.049330	4.632043
Н	-0.098032	-0.001670	6.016104
Н	2.112489	-0.052372	4.785766
Н	2.114649	-0.050114	2.304120
Cr(CO) ₄ (2,2'-bipy	vr)		
Atom	X	У	Z
Cr	0.453243	-0.482911	-0.491684
С	2.281405	-0.471264	-0.767528
0	3.438805	-0.459497	-0.941460
С	0.367993	-2.309023	-0.768075
0	0.310189	-3.464979	-0.942441

С	0.841016	-0.887943	1.328697
0	1.138456	-1.199442	2.408112
С	0.277744	-0.300381	-2.379564
0	0.234931	-0.256948	-3.540133
N	0.270284	1.583175	-0.136529
Ν	-1.603771	-0.216200	-0.136971
С	-2.039285	1.054107	0.130454
С	-3.394101	1.329179	0.379830
С	-4.327479	0.296981	0.358065
С	-3.878866	-1.001352	0.084213
С	-2.524717	-1.210378	-0.154599
С	1.301032	2.463009	-0.153685
С	1.147123	3.824473	0.085416
С	-0.131977	4.325397	0.359073
С	-1.201233	3.434698	0.380354
С	-0.981348	2.069888	0.130704
Н	-3.718016	2.350211	0.590804
Н	-5.384320	0.499403	0.550670
Н	-4.567425	-1.849076	0.054491
Н	-2.139310	-2.207931	-0.371198
Н	2.282177	2.037489	-0.370141
Н	2.022135	4.478022	0.056063
Н	-0.291361	5.389540	0.551896
Н	-2.208323	3.799757	0.591164
[(Fe ₂ S ₂)(SMe) ₃ (Ir	n)] ² , mitoNEET cluster	model	
Atom	x	У	Z
Fe	15.565009	-6.863056	-5.028041
Fe	13.893362	-8.003905	-3.305538
S	15.147037	-9.053765	-4.809706
S	14.092857	-5.818469	-3.699522
N	14.647719	-8.261486	-1.237200
С	15.915970	-8.494740	-0.713908
С	15.905149	-8.205919	0.636709
С	13.889179	-7.843475	-0.230662
N	14.608740	-7.795571	0.933688
С	17.054490	-8.940430	-1.569158
Н	16.686014	-8.240665	1.394352
Н	12.832474	-7.595106	-0.325128
Н	14.279161	-7.442981	1.827121
Н	16.770848	-9.820031	-2.169241
Н	17.937183	-9.180776	-0.950566
Н	17.325169	-8.150752	-2.295152
S	15.373509	-6.058444	-7.256472
С	13.545176	-6.095344	-7.522305

Н	13.305071	-5.683788	-8.520243
Н	13.031963	-5.499622	-6.750066
Н	13.166201	-7.128963	-7.464845
S	17.822397	-6.355105	-4.506396
С	17.721313	-4.539352	-4.171213
Н	18.717621	-4.151315	-3.888770
Н	17.008769	-4.344081	-3.353879
Н	17.369677	-4.004593	-5.068454
S	11.809433	-8.837906	-2.626795
С	10.628666	-8.370659	-3.974043
Н	9.599072	-8.674263	-3.704538
Н	10.906121	-8.868024	-4.918271
Н	10.646649	-7.281415	-4.141760
$[(Fe_2S_2)(SMe)_2(I)]$	$m)_2$], Rieske cluster mod	del	
Atom	x	У	Z
Fe	67.395051	51.076454	0.766091
Fe	69.787283	50.246573	0.124066
S	69.318940	52.189746	1.021368
S	67.935209	49.089138	-0.111712
Ν	70.914613	50.270367	-1.668549
С	70.709704	51.110149	-2.765000
С	71.343443	50.566905	-3.862778
С	71.655179	49.252234	-2.100783
Ν	71.937776	49.388689	-3.430149
С	69.880012	52.346354	-2.673942
Н	71.410014	50.898260	-4.896142
Н	72.442149	48.723611	-4.008577
Н	71.982549	48.411709	-1.494228
Н	69.849796	52.865491	-3.645988
Н	70.273597	53.031885	-1.906149
Н	68.848620	52.103133	-2.361658
Ν	71.131010	49.059722	1.254069
С	72.329162	49.414961	1.874325
С	72.684595	48.423898	2.765932
С	70.777990	47.877784	1.760346
Ν	71.698026	47.454099	2.677303
С	73.005844	50.714840	1.584345
Н	73.527435	48.328508	3.446475
Н	69.849355	47.361784	1.523958
Н	71.620459	46.621228	3.253179
Н	72.309278	51.549566	1.774833
Н	73.305039	50.784107	0.524441
Н	73.902518	50.840564	2.212740
S	66.042618	52.357783	-0.643962

H 63.814715 51.763249 -1.4617 H 64.180040 50.937904 0.0933 H 64.894064 50.328441 -1.4287 S 66.190799 50.731591 2.7253 C 65.924853 52.466198 3.3027 H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5110 H 66.886284 52.939724 3.5578	754 316 796 388 180 528
H 64.180040 50.937904 0.0933 H 64.894064 50.328441 -1.4283 S 66.190799 50.731591 2.7253 C 65.924853 52.466198 3.3023 H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5116 H 66.886284 52.939724 3.5578 Pyridine 50.32844 50.32844 50.32844	316 796 388 180 528
H 64.894064 50.328441 -1.428 S 66.190799 50.731591 2.7253 C 65.924853 52.466198 3.302 H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5116 H 66.886284 52.939724 3.5578 Pyridine 50.886284 52.939724 3.5578	796 388 180 528
S 66.190799 50.731591 2.7253 C 65.924853 52.466198 3.302 H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5116 H 66.886284 52.939724 3.5578 Pyridine 50.886284 52.939724 5.578	388 180 528
C 65.924853 52.466198 3.302 H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5116 H 66.886284 52.939724 3.5578 Pyridine 2.5116 3.5578	180 528
H 65.279528 52.458293 4.1976 H 65.441237 53.061235 2.5110 H 66.886284 52.939724 3.5578 Pyridine 2000 2000 2000	528
H 65.441237 53.061235 2.5110 H 66.886284 52.939724 3.5578 Pyridine	256
H 66.886284 52.939724 3.5578 Pyridine	J56
Pyridine	888
Atom x y	Z
C 1.145736 0.686898 0.000	000
N 0.000000 1.390722 0.000	000
C -1.145736 0.686898 0.000	000
C -1.201972 -0.712227 0.000	000
C 0.000000 -1.427396 0.000	000
C 1.201972 -0.712227 0.000	000
Н 2.066968 1.278924 0.000	000
Н -2.066968 1.278924 0.000	000
Н -2.166265 -1.225265 0.000	000
Н 0.000000 -2.519985 0.000	000
Н 2.166265 -1.225265 0.000	000
Pyridinium	
Atom x y	z
Atom x y C 1.193979 0.686365 0.0000	z 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000	z 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000	z 000 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000	z 000 000 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000	z 000 000 000 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000	z 000 000 000 000 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 H 0.000000 2.353969 0.0000	z 2000 2000 2000 2000 2000 2000 2000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000	z 000 000 000 000 000 000 000
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.000000 2.353969 0.0000 H 2.086612 1.310218 0.0000	z 0000 0000 0000 0000 0000 0000 0000
AtomxyC1.1939790.6863650.0000N0.0000001.3320690.0000C-1.1939790.6863650.0000C-1.214138-0.7012210.0000C0.000000-1.4021210.0000C1.214138-0.7012210.0000H0.0000002.3539690.0000H2.0866121.3102180.0000H-2.0866121.3102180.0000	z 000 000 000 000 000 000 000 000 000
AtomxyC1.1939790.6863650.0000N0.0000001.3320690.0000C-1.1939790.6863650.0000C-1.214138-0.7012210.0000C0.000000-1.4021210.0000C1.214138-0.7012210.0000C1.214138-0.7012210.0000H0.0000002.3539690.0000H2.0866121.3102180.0000H-2.0866121.3102180.0000H0.000000-2.4933510.0000	z 0000 0000 0000 0000 0000 0000 0000 0
AtomxyC1.1939790.6863650.0000N0.0000001.3320690.0000C-1.1939790.6863650.0000C-1.214138-0.7012210.0000C0.000000-1.4021210.0000C1.214138-0.7012210.0000C1.214138-0.7012210.0000H0.00000002.3539690.0000H2.0866121.3102180.0000H-2.171722-1.2211460.0000H0.0000000-2.4933510.0000H2.171722-1.2211460.0000	z 000 000 000 000 000 000 000 000 000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C -1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H 0.000000 -2.493351 0.0000 H 2.171722 -1.221146 0.0000	z 0000 0000 0000 0000 0000 0000 0000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H 0.0000000 -2.493351 0.0000 H 2.171722 -1.221146 0.0000 N-methylpyridinium x y y	z 0000 0000 0000 0000 0000 0000 0000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C -1.214138 -0.701221 0.0000 C 0.0000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H -2.171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 N-methylpyridinitw X Y Y C 1.189510 0.682776 -0.0010	z 0000 0000 0000 0000 0000 0000 0000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H -2.171722 -1.221146 0.0000 H 2.171722 -1.22146 0.0000 N-methylpyridinium X Y Y C 1.189510 0.682776 -0.0010 N 0.011174 1.360776 -0.0020	z 000 000 000 000 000 000 000 0
AtomxyC 1.193979 0.686365 0.000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 0.000000 -1.402121 0.0000 C 0.000000 -1.402121 0.0000 C 1.214138 -0.701221 0.0000 H 0.000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H -2.171722 -1.221146 0.0000 H 0.2171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 N-methylpyridinium x y y C 1.189510 0.682776 -0.0016 N 0.011174 1.360776 -0.0020 C -1.174380 0.690694 -0.0015	z 0000 0000 0000 0000 0000 0000 0000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 0.1214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.086612 1.310218 0.0000 H -2.171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 H 2.171722 -1.22146 0.0000 N-methylpyridinium X Y Y C 1.189510 0.682776 -0.0016 N 0.011174 1.360776 -0.0020	z 000 000 000 000 000 000 000 000 000 0
Atom x y C 1.193979 0.686365 0.0000 N 0.000000 1.332069 0.0000 C -1.193979 0.686365 0.0000 C -1.214138 -0.701221 0.0000 C 0.000000 -1.402121 0.0000 C 0.1214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 C 1.214138 -0.701221 0.0000 H 0.0000000 2.353969 0.0000 H 2.086612 1.310218 0.0000 H -2.171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 H 2.171722 -1.221146 0.0000 N-methylpyridinium Y C 1.189510 0.682776 -0.0016 N 0.011174 1.360776 -0.0020 C -1.174380 0.690694	z 0000 0000 0000 0000 0000 0000 0000 0

Н	2.095539	1.286441	-0.002208
Н	-2.073688	1.305630	-0.002293
Н	-2.169477	-1.203728	0.001147
Н	-0.004512	-2.500673	0.002734
Н	2.169483	-1.220838	0.001432
С	-0.002330	2.846232	-0.004728
Н	1.026443	3.216264	0.006292
Н	-0.529175	3.205461	0.886984
Н	-0.509083	3.202248	-0.909421
Pyridine oxide			
Atom	x	у	Z
С	1.186103	0.683712	0.000000
N	0.000000	1.395721	0.000000
С	-1.186103	0.683712	0.000000
С	-1.198250	-0.702466	0.000000
С	0.000000	-1.427532	0.000000
С	1.198250	-0.702466	0.000000
0	0.000000	2.674576	0.000000
Н	2.071734	1.315327	0.000000
Н	-2.071734	1.315327	0.000000
Н	-2.164935	-1.209200	0.000000
Н	0.000000	-2.517509	0.000000
Н	2.164935	-1.209200	0.000000
Pyridine sulfur tri	oxide		
Atom	x	у	Z
С	1.156504	0.651417	0.001795
Ν	-0.019213	1.304287	0.003756
S	-0.017490	3.401658	0.007699
0	-1.480061	3.582675	0.003299
С	-1.185950	0.639462	0.003952
С	-1.214382	-0.755791	0.001871
С	-0.003485	-1.455382	-0.000204
С	1.200760	-0.741412	-0.000357
0	0.708778	3.600748	1.272240
0	0.717156	3.605223	-1.250968
Н	2.051580	1.274637	0.001697
Н	-2.080338	1.264220	0.005446
Н	-2.172573	-1.276308	0.001819
Н	0.003146	-2.546992	-0.001905
Н	2.164568	-1.251442	-0.002140
Imidazole			
Atom	x	у	Z
С	0.867718	0.889317	0.000000
Ν	-0.428931	1.365904	0.000000

С	-1.195647	0.288639	0.000000
Ν	-0.448902	-0.863901	0.000000
С	0.884036	-0.489857	0.000000
Н	1.716819	1.567928	0.000000
Н	-2.282665	0.278509	0.000000
Н	-0.802594	-1.814856	0.000000
Н	1.687165	-1.219683	0.000000
1,2,4-Triazole			
Atom	Х	У	Z
С	0.947322	0.669955	0.000000
Ν	-0.364993	1.060876	0.000000
Ν	-1.132684	-0.002851	0.000000
Ν	-0.305333	-1.081896	0.000000
С	1.004069	-0.711203	0.000000
Н	1.754753	1.395123	0.000000
Н	-0.706889	-2.014408	0.000000
Н	1.820755	-1.424596	0.000000

References

- Wang, K.; Wang, W.; No, J. H.; Zhang, Y.; Zhang, Y.; Oldfield, E., J. Am. Chem. Soc. 2010, 132, 6719-6727.
- Wang, W.; Wang, K.; Liu, Y.-L.; No, J. H.; Nilges, M. J.; Oldfield, E., *Proc. Natl. Acad. Sci. U.S.A.* 2010, 107, 4522-4527.
- 3. Stoll, S.; Schweiger, A., J. Magn. Reson. 2006, 178, 42-55.
- 4. Gaussian 09 (Revision A.01): M. J. Frisch et al., see Supporting Information.
- 5. Wachters, A., J. Chem. Phys. 1970, 52, 1033-1036.
- 6. Bauschlicher, C. W.; Langhoff, J. S. R.; Barnes, L. A., J. Chem. Phys. 1989, 91, 2399-2411.
- 7. Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A., J. Chem. Phys. 1980, 72, 650-654.
- 8. Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
- 9. Perdew, J. P.; Wang, Y., Phys. Rev. B 1992, 45, 13244-13249.
- 10. Becke, A. D., J. Chem. Phys. 1993, 98, 5648-5652.
- 11. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., *J. Phys. Chem.* **1994**, 98, 11623-11627.
- 12. Schaefer, A.; Huber, C.; Ahlrichs, R., J. Chem. Phys. 1994, 100, 5829-5835.
- 13. Tokman, M.; Sundholm, D.; Pyykkö P.; Olsen, J., Chem. Phys. Lett. 1997, 265, 60-64.
- 14. Rubenacker, G.; Brown, T., Inorg. Chem. 1980, 19, 392-398.
- 15. Palmer, M. H.; Stephenson, D.; Smith, J. A. S., Chem. Phys. 1985, 97, 103-111.
- 16. Hunt, S. W.; Leopold, K. R., J. Phys. Chem. A 2001, 105, 5498-5506.
- 17. Dicus, M. M.; Conlan, A.; Nechushtai, R.; Jennings, P. A.; Paddock, M. L.; Britt, R. D.; Stoll, S., *J. Am. Chem. Soc.* **2010**, 132, 2037-49.
- Gurbiel, R. J.; Batie, C. J.; Sivaraja, M.; True, A. E.; Fee, J. A.; Hoffman, B. M.; Ballou, D. P., Biochemistry 1989, 28, 4861-71.