

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010

Tetra- to Dodecanuclear Oxomolybdate Complexes with Functionalized Bisphosphonate Ligands: Activity in Killing Tumor Cells

Jean-Daniel Compain,^[a] Pierre Mialane,^[a] Jérôme Marrot,^[a] Francis Sécheresse,^[a] Wei Zhu,^[b] Eric Oldfield,^{*[b, c]} and Anne Dolbecq^{*[a]}

chem_201001626_sm_miscellaneous_information.pdf

Figure SI1. Ball and stick representation with partial atomic labeling scheme, selected bond distances and valence bond calculations in the anion of **1**.

Figure SI2. Ball and stick representation with partial atomic labeling scheme, selected bond distances and valence bond calculations in the anion of **2**.

Figure SI3. Ball and stick representation with partial atomic labeling scheme, selected bond distances and valence bond calculations in the anion of **3**.

$M_0(3) - O(13)$	1 703(4)	$S(M_03) = 5.1$
$M_0(3) - O(15)$	1.951(4)	
Mo(3)-O(14)	1.952(4)	
$M_0(3)-O(16)$	2.036(4)	S(O16) = 1.76
$M_0(3) - O(17)$	2.129(4)	
$M_0(3) - O(18)$	2.310(4)	
$M_0(3)-M_0(8)$	2.5921(7)	
100(3) 100(0)	2.3721(7)	
$M_{0}(4)-O(19)$	1.702(4)	$S(M_04) = 5.1$
Mo(4)-O(20)	1.937(4)	
Mo(4)-O(21)	1.951(4)	
$M_0(4)-O(23)$	2.056(4)	S(O23) = 1.62
Mo(4)-O(22)	2.090(4)	
Mo(4)-O(24)	2.357(4)	
Mo(4)-Mo(7)	2.5758(7)	
Mo(5)-O(25)	1.704(4)	S(Mo5) = 5.1
Mo(5)-O(9)	1.944(4)	
Mo(5)-O(8)	1.948(4)	
Mo(5)-O(26)	2.057(4)	S(O26) = 1.63
Mo(5)-O(27)	2.110(4)	
Mo(5)-O(28)	2.287(4)	
Mo(6)-O(29)	1.705(5)	S(Mo6) = 5.2
Mo(6)-O(2)	1.934(4)	
Mo(6)-O(3)	1.941(4)	
Mo(6)-O(30)	2.045(4)	S(O30) = 1.54
Mo(6)-O(31)	2.116(4)	
Mo(6)-O(32)	2.311(4)	
Mo(7)-O(33)	1.695(4)	S(M07) = 5.1
Mo(7)-O(20)	1.929(4)	
Mo(7)-O(21)	1.949(4)	
Mo(7)-O(34)	2.100(4)	
Mo(7)-O(35)	2.111(4)	
Mo(7)-O(36)	2.358(4)	S(O36) = 0.29
Mo(8)-O(37)	1.692(4)	S(Mo8) = 5.1
Mo(8)-O(14)	1.942(4)	
Mo(8)-O(15)	1.950(4)	
Mo(8)-O(38)	2.071(4)	
Mo(8)-O(39)	2.076(4)	
Mo(8)-O(40)	2.413(4)	S(O40) = 0.25

Figure SI4. Ball and stick representation with partial atomic labeling scheme, selected bond distances and valence bond calculations in the anion of **4**.

Figure SI5. Ball and stick representation with partial atomic labeling scheme, selected bond distances and valence bond calculations in the anion of **5**.

Mo(4)-O(15) Mo(4)-O(18)	2.328(3) 2.377(5)	
$M_{0}(5)-O(23)$	1 693(5)	
Mo(5)-O(22)	1.720(6)	
Mo(5)-O(21)	1.867(4)	
Mo(5)-O(16)	1.954(4)	S(Mo5) = 6.04
Mo(5)-O(15)	2.287(5)	
Mo(5)-O(18)	2.432(4)	
Mo(6)-O(28)	1.698(4)	
Mo(6)-O(27)	1.698(5)	
Mo(6)-O(21)	1.905(4)	
Mo(6)-O(26)	2.051(4)	S(Mo6) = 6.09
Mo(6)-O(24)	2.179(5)	
Mo(6)-O(25)	2.238(3)	
Mo(7)-O(34)	1.697(3)	
Mo(7)-O(33)	1.704(6)	
Mo(7)-O(31)	1.901(4)	S(M07) = 6.02
Mo(7)-O(32)	1.938(4)	S (O32) = 1.86
Mo(7)-O(29)	2.356(3)	
Mo(7)-O(30)	2.367(5)	
Mo(8)-O(37)	1.703(4)	
Mo(8)-O(36)	1.706(4)	
Mo(8)-O(35)	1.876(4)	
Mo(8)-O(31)	1.956(4)	S(Mo8) = 6.00
Mo(8)-O(30)	2.267(4)	
Mo(8)-O(29)	2.378(4)	
Mo(9)-O(42)	1.695(5)	
Mo(9)-O(41)	1.708(3)	
Mo(9)-O(35)	1.921(4)	
Mo(9)-O(40)	2.067(4)	S(Mo9) = 6.00
Mo(9)-O(39)	2.162(3)	
Mo(9)-O(38)	2.248(4)	
Mo(10)-O(48)	1.702(6)	
Mo(10)-O(47)	1.709(4)	
Mo(10)-O(44)	1.882(5)	S(Mo10) = 6.01
Mo(10)-O(46)	1.936(4)	S(O46) = 1.88
Mo(10)-O(45)	2.358(5)	
Mo(10)-O(43)	2.394(3)	
Mo(11)-O(51)	1.685(5)	
Mo(11)-O(50)	1.708(6)	
Mo(11)-O(49)	1.883(4)	
Mo(11)-O(44)	1.958(4)	
Mo(11)-O(43)	2.273(5)	S(Mo11) = 6.09
Mo(11)-O(45)	2.429(4)	
Mo(12)-O(56)	1.695(4)	
Mo(12)-O(55)	1.713(5)	
Mo(12)-O(49)	1.880(4)	.
Mo(12)-O(54)	2.070(4)	S(Mo12) = 6.08
Mo(12)-O(52)	2.163(5)	
Mo(12)-O(53)	2.249(3)	

Figure SI6. Details of the intramolecular hydrogen bond interactions between the amino group of the **Ale** ligand and bridging and terminal oxygen atoms of the Mo framework.

Figure SI7. ³¹P NMR spectrum of a) a freshly prepared synthetic solution of **1** and b) a solution of **3** dissolved in water.

Figure SI8. ³¹P NMR spectrum of freshly prepared synthetic solutions of a) 2 and b) 4.

Figure SI9. Evolution with time of the relative concentration of ($\frac{1}{3}$), 3 (?) and of the sum of the concentrations of the unidentified X1 and X2 species (?) (see Figure 8). X1 and X2 are assumed to contain 4 phosphorus each

