An ENDOR and HYSCORE Investigation of a Reaction Intermediate in IspG

(GcpE) Catalysis

Supporting Information

Weixue Wang, Ke Wang, Jikun Li, Saritha Nellutla, Tatyana I. Smirnova and Eric Oldfield

Experimental Section

Materials. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were used as provided. BL-21(DE3) competent cells were purchased from Stratagene (La Jolla, CA).

E. coli IspG Protein Production and Purification. BL-21(DE3) cells overexpressing *E. coli* IspG (encoded in plasmid pASK-IBA5⁺) and *isc* proteins (encoded in plasmid pDB1282) were grown in LB media supplemented with 100 mg/L ampicillin and 50 mg/L kanamycin at 37 °C, until the OD₆₀₀ reached 0.3. Cells were then induced with 0.5 g L-arabinose to initiate overexpression of the *isc* proteins. Cysteine (0.5 mM) and FeCl₃ (0.1 mM) were supplemented, and cells were grown until the OD₆₀₀ reached 0.6. At this point, 400 µg/L anhydrotetracycline was added to induce overexpression of *E. coli* IspG. Cells were grown at 21 °C for 24 hours, then were harvested by centrifugation (9000 rpm, 8 min, 4 °C) and were kept at -80 °C until use.

All purification steps were carried out in a Coy Vinyl Anaerobic Chamber (Coy Laboratories, Grass Lake, MI) with an oxygen level < 2 ppm, and all buffers were degassed by using a Schlenk line. Cell pellets were resuspended in 100 mM Tris-HCl, 150 mM NaCl buffer (pH 8.0). Lysozyme, Benzonase nuclease (EMD Chemicals, San Diego, CA) and phenylmethanesulfonyl fluoride were added, and stirred for 1.5 hour at 10 °C followed by sonication (Fisher Scientific Sonic Dismembrator, Model 500) with 4 pulses, each 7 sec duration at 35% power. The cell lysate was then centrifuged at 11,000 rpm at 10 °C for 30 min. The supernatant was purified by using Strep-tactin chromatography.¹ Fractions having a brown color were collected and desalted in pH 8.0 buffer containing 100 mM Tris-HCl and 150 mM NaCl.

Labeled MecPPs and HMBPP-epoxides. $[u^{-2}H]$ -MEcPP, $[u^{-13}C]$ -MEcPP (14) and $[2,3^{-13}C_2]$ -MEcPP (16) were all prepared biosynthetically as described previously,² from ¹³C-glucoses. $[1,3,4^{-13}C_3]$ MEcPP (15) was from the batch whose synthesis was described previously.³ HMBPP epoxides were prepared from labeled HMBPPs^{4, 5} as described previously, by adding bromine water to form the bromohydrin, followed by ammonia, to form the corresponding epoxides.²

ENDOR/HYSCORE Sample preparation. All samples were prepared inside a Coy Vinyl Anaerobic Chamber with an oxygen level < 2 ppm. Samples were typically 1.0-2.0 mM in IspG, and glycerol was added as a glassing agent to 20% (v/v). 40 equivalents of sodium dithionite were added as a reducing agent, and ligands (MEcPP or HMBPP-epoxide) were added to 20 equivalents. To trap the reaction intermediate "X", samples in EPR tubes (706-PQ-9.50, Wilmad Labglass, Vineland, NJ) were frozen in liquid nitrogen ~30 sec after substrate injection at room temperature.

ENDOR/HYSCORE Spectroscopy. Pulsed ENDOR/HYSCORE spectra were obtained on a Bruker ElexSys E-580-10 FT-EPR X-band and Q-band EPR spectrometer equipped with an Oxford Instruments CF935 cryostat. A Bruker RF amplifier (150 watts, 100 kHz - 250 MHz) was used for ENDOR experiments. Mims ENDOR used a three-pulse sequence $\pi/2_{mw} - \tau - \pi/2_{mw} - \tau - \pi/2_{mw} - \tau - echo; \pi/2_{mw} = 16$ ns, with π_{RF} (20 µs, 3 dB attenuation) applied during T. The X-band Mims ENDOR spectrum of "X" prepared using unlabeled HMBPP-epoxide was subtracted from those of "X" prepared using labelled HMBPP-epoxides. Davies ENDOR used a three-pulse sequence $\pi_{mw} - T - \pi/2_{mw} - \tau - \pi_{mw} - \tau - echo; \pi/2_{mw} = 48$ ns, with π_{RF} (10 µs, 3 dB attenuation) applied during T. HYSCORE used a four-pulse sequence $\pi/2_{mw} - \tau - \pi/2_{mw} - \tau -$

References

- 1. Schmidt, T. G; Skerra, A., Nat. Protoc. 2007, 2, 1528-35.
- 2. Wang, W.; Li, J.; Wang, K.; Huang, C.; Zhang, Y.; Oldfield, E., Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 11189-11193.
- 3. Schuhr, C. A.; Hecht, S.; Kis, K.; Eisenreich, W.; Wungsintaweekul, J.; Bacher, A.; Rohdich, F., Eur. J. Org. Chem. 2001, 3221-3226.
- 4. Wang, W.; Wang, K.; Liu, Y.-L.; No, J. H.; Nilges, M. J.; Oldfield, E., Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4522-4527.
- 5. Xiao, Y.; Liu, P., Angew. Chem. Int. Ed. Engl. 2008, 47, 9722-5.
- 6. Stoll, S.; Schweiger, A., J. Magn. Reson. 2006, 178, 42-55.

Figure S1. HYSCORE spectra (left) of the reaction intermediate "X" prepared by using *E. coli* IspG and **14** at three different magnetic field strengths, together with simulations (right) of the 17.7 MHz and 3 MHz ¹³C hyperfine signals. (a) Magnetic field strength = 330.8 mT (g = 2.08); (b) magnetic field strength = 342.3 mT (g = 2.02); (c) magnetic field strength = 345.5 mT (g = 2.00); (d) simulation of (a); (e) simulation of (b); (f) simulation of (c). The signals at ~ 3.6 MHz are the superposition of ¹³C signals arising from very small hyperfine couplings (≤ 1 MHz) from the labeled substrates and the double quantum transition of protein ¹⁴N, and are not simulated. Experimental parameters are: microwave frequency = 9.684 GHz, $\tau = 136$ ns and T = 20.0 K. Spectra were simulated using $A_{ii} = [14.5, 12.0, 26.5]$ MHz with Euler angles $\alpha = 0^{\circ}$, $\beta = 18^{\circ}$, $\gamma = 0^{\circ}$ for C2, and $A_{ii} = [1.8, 2.0, 5.1]$ MHz with Euler angles $\alpha = 40^{\circ}$, $\beta = 30^{\circ}$, $\gamma = 0^{\circ}$ for C3.

Figure S2. HYSCORE spectra (left) at g_2 of the reaction intermediate "X", prepared by using **14**, at different τ values, together with simulations (right) of the 17.7 MHz and 3 MHz signals. (a) - (e) are experimental results at $\tau = 108$, 136, 200, 300 and 400 ns, respectively. (f) - (j) are simulations of (a) - (e). In (a) - (e), the signals at ~ 3.6 MHz are the superposition of ¹³C signals with very small hyperfine couplings (≤ 1 MHz) from the labeled substrates and the protein ¹⁴N double quantum transition, and are not simulated; the signals centered at 14.5 MHz are proton signals and are also not simulated. Experimental parameters are: microwave frequency = 9.674 GHz, magnetic field strength = 342.5 mT and T = 20.0 K. Simulation parameters are listed in the Figure Caption of Figure S3.

Figure S3. HYSCORE spectra of the reaction intermediate "X" prepared by using *E. coli* IspG **15** at three different magnetic field strengths (left) and simulations of the 3 MHz ¹³C hyperfine signals (right). (a) Magnetic field strength = 331.0 mT (g = 2.08); (b) magnetic field strength = 342.86 mT (g = 2.02); (c) magnetic field strength = 346.0 mT (g = 2.00); (d) – (f) are simulations of (a) - (c), respectively. In (a) - (c), the signals at ~ 3.6 MHz are superpositions of ¹³C signals arising from very small hyperfine couplings (≤ 1 MHz) from the labeled substrates and protein ¹⁴N double quantum transitions and are not simulated; the signals centered at 14.5 MHz are proton signals and are also not simulated. Experimental parameters are: microwave frequency = 9.684 GHz, $\tau = 200$ ns and T = 20.0 K. Spectra were simulated using $A_{ii} = [1.8, 2.0, 5.1]$ MHz with Euler angles $\alpha = 40^\circ$, $\beta = 30^\circ$, $\gamma = 0^\circ$ for C3.

Figure S4. HYSCORE spectra at g₂ of the reaction intermediate "X" prepared by using ¹³C-labeled MEcPP at different τ values. (a) - (e) are from the sample prepared using 15 and (f) - (j) are from the sample prepared using 14. The signals at ~ 3.6 MHz are superpositions of ¹³C signals having very small hyperfine couplings (≤ 1 MHz) from the labeled substrates, and the protein ¹⁴N double quantum transitions. The signals centered at 14.5 MHz are proton signals. Microwave frequency 9.684 GHz for (a) - (e) and 9.674 GHz for (f) - (j). Magnetic field strength: 342.86 mT for (a) - (e) and 342.5 mT for (f) - (j). T = 20.0 K.